
pynndescent
Release 0.5.0

Apr 20, 2023

User Guide / Tutorial:

1 Why use PyNNDescent? 3

2 Installing 9
2.1 How to use PyNNDescent . 9
2.2 PyNNDescent with different metrics . 22
2.3 Working with sparse data . 27
2.4 Working with Scikit-learn pipelines . 29
2.5 How PyNNDescent works . 34
2.6 PyNNDescent Performance . 49
2.7 PyNNDescent API Guide . 57

3 Indices and tables 65

Python Module Index 67

Index 69

i

ii

pynndescent, Release 0.5.0

PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors. It provides a python imple-
mentation of Nearest Neighbor Descent for k-neighbor-graph construction and approximate nearest neighbor search,
as per the paper:

Dong, Wei, Charikar Moses, and Kai Li. “Efficient k-nearest neighbor graph construction for generic similarity
measures.” Proceedings of the 20th international conference on World wide web. ACM, 2011.

This library supplements that approach with the use of random projection trees for initialisation. This can be particu-
larly useful for the metrics that are amenable to such approaches (euclidean, minkowski, angular, cosine, etc.). Graph
diversification is also performed, pruning the longest edges of any triangles in the graph.

Currently this library targets relatively high accuracy (80%-100% accuracy rate) approximate nearest neighbor
searches.

User Guide / Tutorial: 1

pynndescent, Release 0.5.0

2 User Guide / Tutorial:

CHAPTER 1

Why use PyNNDescent?

PyNNDescent provides fast approximate nearest neighbor queries. The ann-benchmarks system puts it solidly in the
mix of top performing ANN libraries:

SIFT-128 Euclidean

3

https://github.com/erikbern/ann-benchmarks

pynndescent, Release 0.5.0

4 Chapter 1. Why use PyNNDescent?

pynndescent, Release 0.5.0

NYTimes-256 Angular

5

pynndescent, Release 0.5.0

6 Chapter 1. Why use PyNNDescent?

pynndescent, Release 0.5.0

While PyNNDescent is among fastest ANN library, it is also both easy to install (pip and conda installable) with no
platform or compilation issues, and is very flexible, supporting a wide variety of distance metrics by default:

Minkowski style metrics

• euclidean

• manhattan

• chebyshev

• minkowski

Miscellaneous spatial metrics

• canberra

• braycurtis

• haversine

Normalized spatial metrics

• mahalanobis

• wminkowski

• seuclidean

Angular and correlation metrics

• cosine

• dot

• correlation

• spearmanr

• tsss

• true_angular

Probability metrics

• hellinger

• wasserstein

Metrics for binary data

• hamming

• jaccard

• dice

• russelrao

• kulsinski

• rogerstanimoto

• sokalmichener

• sokalsneath

• yule

7

pynndescent, Release 0.5.0

and also custom user defined distance metrics while still retaining performance.

PyNNDescent also integrates well with Scikit-learn, including providing support for the KNeighborTransformer as a
drop in replacement for algorithms that make use of nearest neighbor computations.

8 Chapter 1. Why use PyNNDescent?

CHAPTER 2

Installing

PyNNDescent is designed to be easy to install being a pure python module with relatively light requirements:

• numpy

• scipy

• scikit-learn >= 0.22

• numba >= 0.51

all of which should be pip or conda installable. The easiest way to install should be via conda:

conda install -c conda-forge pynndescent

or via pip:

pip install pynndescent

2.1 How to use PyNNDescent

PyNNDescent is a library that provides fast approximate nearest neighbor search. It is designed to be as flexible as
possible for python users. That includes a wealth of pre-defined distance measures, the ability to use custom user-
defined distance measures, as well as handling of sparse matrix inputs and more. Let’s walk through how you can use
PyNNDescent for approximate nearest neighbor search. First let’s load the library, and some tools to get some suitable
data.

[1]: import pynndescent
import numpy as np
import h5py
from urllib.request import urlretrieve
import os

The ann-benchmarks website, maintained by Erik Bernhardsson, Martin Aumueller and Alex Faitfull, provides a
comprehensive suite of benchmarking for approximate nearest neighbor libraries and algorithms. For our purposes the

9

http://ann-benchmarks.com

pynndescent, Release 0.5.0

important fact is that this includes keeping a variety of datasets, of varying levels of size and difficulty, for trying out
nearest neighbor search on. To make things easy we’ll write a short function that can fetch the (pre-prepared) dataset
from ann-benchmarks and load it into train and test numpy arrays.

[2]: def get_ann_benchmark_data(dataset_name):
if not os.path.exists(f"{dataset_name}.hdf5"):

print(f"Dataset {dataset_name} is not cached; downloading now ...")
urlretrieve(f"http://ann-benchmarks.com/{dataset_name}.hdf5", f"{dataset_name}

→˓.hdf5")
hdf5_file = h5py.File(f"{dataset_name}.hdf5", "r")
return np.array(hdf5_file['train']), np.array(hdf5_file['test']), hdf5_file.attrs[

→˓'distance']

To start let’s grab the fashion-mnist dataset for some initial experiments.

[3]: fmnist_train, fmnist_test, _ = get_ann_benchmark_data('fashion-mnist-784-euclidean')

With the dataset now loaded let’s build a search index for the training set. This is done using the NNDescent class,
which we simply hand the training data to (we’ll look at other parameter options later). It will take a little time to build
the index, so let’s keep track using the %time magic in jupyter.

[4]: %%time
index = pynndescent.NNDescent(fmnist_train)

CPU times: user 48.5 s, sys: 1.07 s, total: 49.5 s
Wall time: 27.7 s

Over ten seconds! That seems slow. How much data did we index, and how high dimensional is it?

[5]: fmnist_train.shape

[5]: (60000, 784)

Okay, so sixty-thousand samples living in a seven-hundred and eighty-four dimensional space – that is a reasonable
amount of data. We already had the data however, so why did we spend all that time building an index on top of it?
It allows us to query that data to find the points closest to new, previously unseen data points. This is a surprisingly
common problem – “find the other things that look like this” – that crops up in everything from recommendation
systems (e.g. what are some other songs or artists that are like this song?), to classification and regression (using a
KNN-classifier and friends), to clustering (and density based clustering algorithm makes heavy use of near neighbor
searches to determine density).

So, given that we have built an index on the training data, we can use that index to find the nearest neighbors from the
training set to each sample in the test set. Let’s do that now for the first 10 samples of the test set, again, keeping track
of the time:

[6]: %%time
neighbors = index.query(fmnist_test[:10])

CPU times: user 23.4 s, sys: 377 ms, total: 23.8 s
Wall time: 18.3 s

That was also slow! What happened? The first time the index is queried it does some book-keeping (that may not be
required for some other tasks as we’ll see below). There is also time for numba to JIT compile many routines in the
background (you might find, for instance, that the very first run of index building might take longer than you expect,
but subsequence runs are much faster). You can force this ahead of time by calling the prepare method. Let’s
rebuild the index from scratch including the prepare step to see how long that takes.

10 Chapter 2. Installing

https://github.com/azlandoresearch/fashion-mnist
https://scikit-learn.org/stable/modules/neighbors.html#classification

pynndescent, Release 0.5.0

[7]: %%time
index = pynndescent.NNDescent(fmnist_train)
index.prepare()

CPU times: user 47.3 s, sys: 743 ms, total: 48.1 s
Wall time: 20 s

That took longer, but how long do the queries take now? Let’s query the entire test set.

[8]: %%time
neighbors = index.query(fmnist_test)

CPU times: user 742 ms, sys: 17.6 ms, total: 759 ms
Wall time: 758 ms

That’s more like the sort of performance we might have been hoping for. And just to demonstrate that the prepare step
is getting called on the first query, we’ll start from scratch again.

[9]: %%time
index = pynndescent.NNDescent(fmnist_train)
neighbors = index.query(fmnist_test[:10])

CPU times: user 47.1 s, sys: 673 ms, total: 47.8 s
Wall time: 19.4 s

[10]: %%time
neighbors = index.query(fmnist_test)

CPU times: user 785 ms, sys: 21.3 ms, total: 806 ms
Wall time: 821 ms

Again, we get the sort of performance we might hope for by constructing a fast index over the data (and the numba JIT
compiler is stating to warm up a little). There is a catch however – at the start we said approximate nearest neighbor
search. We might have gotten some neighbors data returned, but how good is it? Being fast doesn’t matter if you
return random results. To check we’ll have to find the true nearest neighbors of the test set. Given that we have to
search through sixty-thousand points for each of the ten-thousand test samples a pure brute force approach is going to
be too expensive. Instead we can use kd-trees from scikit-learn.

[11]: from sklearn.neighbors import KDTree

The KDTree is scikit-learn has a very similar interface. You hand the tree constructor the training data, and then you
can query it. In this case there is no prepare step required – all the work is done at construction time since there aren’t
intermediate results that might be useful. We can time how long the KDTree takes to do its exact nearest neighbor
computation to get a gauge on what PyNNDescent is buying us before we get to the issue of comparing the results of
the exact and approximate algorithms.

[12]: %%time
tree_index = KDTree(fmnist_train)

CPU times: user 15.2 s, sys: 177 ms, total: 15.3 s
Wall time: 15.6 s

A faster build time for the tree itself. The question is how well the tree index works when querying new points. . .

[13]: %%time
tree_neighbors = tree_index.query(fmnist_test, k=10)

CPU times: user 10min 19s, sys: 3.24 s, total: 10min 22s
Wall time: 11min 12s

2.1. How to use PyNNDescent 11

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html

pynndescent, Release 0.5.0

Ouch! We can see now what PyNNDescent is buying us in terms of querying speed (though, to be fair, this is high
dimensional data that is a worst case scenario for kd-trees). We did have to give up some accuracy to get that speed-up
however. The real question is how much accuracy did we lose? How approximate are our nearest neighbors?

We can write a short function to take some approximate neighbors and the true neighbors and output the proportion of
neighbors that the apprxomation got correct for each and every query point (i.e. each point of the test set).

[14]: def accuracy_per_query_point(approx_neighbors, true_neighbors):
approx_indices = approx_neighbors[0]
true_indices = true_neighbors[1]
result = np.zeros(approx_indices.shape[0])
for i in range(approx_indices.shape[0]):

n_correct = np.intersect1d(approx_indices[i], true_indices[i]).shape[0]
result[i] = n_correct / true_indices.shape[1]

return result

[15]: accuracy_stats = accuracy_per_query_point(neighbors, tree_neighbors)

[16]: import seaborn as sns
import matplotlib.pyplot as plt

sns.set(rc={"figure.figsize":(10,6)})

[17]: sns.distplot(accuracy_stats, kde=False)
plt.title("Distribution of accuracy per query point")
plt.xlabel("Accuracy")
print(f"Average accuracy of {np.mean(accuracy_stats)}")

Average accuracy of 0.9781

So we are getting 100% accuracy for the vast majority of query points, but there are a thousand or so that get one

12 Chapter 2. Installing

pynndescent, Release 0.5.0

neighbor wrong, and a very few that get two or three wrong. Even then we are likely getting the eleventh and twelfth
nearest neighbors in those cases. So in general we have a very high accuracy given how much faster the query is.

2.1.1 Query parameters

What if we want to be more accurate? There are a few ways to go about this. The most obvious is to simply ask for
more neighbors, and then the top 10 will be more accurate. We can do this by specifying k in the query (just as we did
for the KDTree – it is just that PyNNDescent defaults to 10 neighbors).

[18]: %%time
more_neighbors = index.query(fmnist_test, k=15)

CPU times: user 1.1 s, sys: 486 ms, total: 1.59 s
Wall time: 1.99 s

[19]: more_accuracy_stats = accuracy_per_query_point(more_neighbors, tree_neighbors)
sns.distplot(more_accuracy_stats, kde=False)
plt.title("Distribution of accuracy per query point")
plt.xlabel("Accuracy")
print(f"Average accuracy of {np.mean(more_accuracy_stats)}")

Average accuracy of 0.99021

An alternative approach is to tolerate a little more backtracking in the approximate search. This is controlled by the
parameter epsilon. The larger the value the more backtracking the algorithm will tolerate, and the more accurate it
will be (at the cost of greater search time). The default value is 0.1 and for euclidean distance going to 0.2 or even
0.3 might make sense. You can, of course, also turn it down to 0.0 and do no backtracking for even faster search
(but reduced accuracy). Let’s try both options; greater accuracy first.

2.1. How to use PyNNDescent 13

pynndescent, Release 0.5.0

[20]: %%time
better_neighbors = index.query(fmnist_test, epsilon=0.2)

CPU times: user 1.35 s, sys: 18.2 ms, total: 1.37 s
Wall time: 1.39 s

[21]: better_accuracy_stats = accuracy_per_query_point(better_neighbors, tree_neighbors)
sns.distplot(better_accuracy_stats, kde=False)
plt.title("Distribution of accuracy per query point")
plt.xlabel("Accuracy")
print(f"Average accuracy of {np.mean(better_accuracy_stats)}")

Average accuracy of 0.9965

With epsilon=0.2 we see a great improvement in accuracy. Everything but a very small number of query points
get all 10 neighbors correct! We took a little more time, but still vastly less than the kd-tree. We also were significantly
more accurate than simply taking more neighbors for very little extra cost in search time. What if we go the other way
and turn epsilon down to zero?

[22]: %%time
worse_neighbors = index.query(fmnist_test, epsilon=0.0)

CPU times: user 456 ms, sys: 6.8 ms, total: 462 ms
Wall time: 471 ms

[23]: worse_accuracy_stats = accuracy_per_query_point(worse_neighbors, tree_neighbors)
sns.distplot(worse_accuracy_stats, kde=False)
plt.title("Distribution of accuracy per query point")
plt.xlabel("Accuracy")
print(f"Average accuracy of {np.mean(worse_accuracy_stats)}")

14 Chapter 2. Installing

pynndescent, Release 0.5.0

Average accuracy of 0.88776

The accuracy has dropped quite a bit now, but if we only need to be “close” then this might be good enough, and it is
definitely faster. This provides an easy trade-off between accuracy and query time.

2.1.2 Index parameters

It is often the case that we know what we really need is fast queries – as fast as possible – and we are willing to
sacrifice accuracy to get there. We know we are going to do a lot of queries, so it would be better if we could set up
the index itself to target faster querying rather than just hoping the epsilon parameter will get things fast enough.

Alternatively we might really want very accurate queries – ideally exact queries, but they are too expensive – and be
prepared to put in more work on the index to make queries more accurate but still fast.

These options can be dealt with via various parameters that are passed to the index constructor. There are many
parameters that can be tweaked (check the docstring for full details), but in practice there are only a few we need to
concern ourselves with. The primary ones of interest are

1. n_neighbors;

2. diversify_prob; and

3. pruning_degree_multiplier.

We’ll look at each in turn to get a quick understanding of what they do. First up is n_neighbors. By default this is
30; more neighbors leads to a more accurate (albeit slower) index, fewer neighbors leads to a faster index at the cost
of accuracy. In general for a high accuracy (on the order or 90%+) index you might want an n_neighbors value
in the range of fifty to one-hundred (a lot will depend on other issues, such as the dataset itself, and the metric used
– angular metrics generally need higher n_neighbors values). For fast indexes you can set it more in the range of
five to twenty (again, dependent on the dataset itself and the metric; a little experimentation may be required). Let’s
try a couple of values with the fashion-mnist dataset and see how it works.

2.1. How to use PyNNDescent 15

pynndescent, Release 0.5.0

[24]: %%time
accurate_index = pynndescent.NNDescent(fmnist_train, n_neighbors=50)
accurate_index.prepare()

CPU times: user 1min 21s, sys: 1.77 s, total: 1min 23s
Wall time: 35.1 s

It takes a little longer to construct the index. Querying will also be a little slower.

[25]: %%time
accurate_neighbors = accurate_index.query(fmnist_test, epsilon=0.2)

CPU times: user 1.39 s, sys: 20.2 ms, total: 1.41 s
Wall time: 1.42 s

[26]: acc_index_accuracy_stats = accuracy_per_query_point(accurate_neighbors, tree_
→˓neighbors)
sns.distplot(acc_index_accuracy_stats, kde=False)
plt.title("Distribution of accuracy per query point")
plt.xlabel("Accuracy")
print(f"Average accuracy of {np.mean(acc_index_accuracy_stats)}")

Average accuracy of 0.9980899999999999

But we see that we are now essentially just about perfect with our accuracy – only a few query points have any
neighbors at all that aren’t true nearest neighbors (and they are almost certainly very close).

Now we can go the other way, and try to make a very very fast index (supposing we want to make an awful lot of
queries at a very high throughput rate). We can decrease n_neighbors.

16 Chapter 2. Installing

pynndescent, Release 0.5.0

[27]: %%time
fast_index = pynndescent.NNDescent(fmnist_train, n_neighbors=5)
fast_index.prepare()

/Users/leland/anaconda3/envs/numba51/lib/python3.8/site-packages/scipy/sparse/_index.
→˓py:124: SparseEfficiencyWarning: Changing the sparsity structure of a csr_matrix is
→˓expensive. lil_matrix is more efficient.
self._set_arrayXarray(i, j, x)

CPU times: user 23.5 s, sys: 974 ms, total: 24.5 s
Wall time: 9.15 s

[28]: %%time
fast_neighbors = fast_index.query(fmnist_test, epsilon=0.0)

CPU times: user 290 ms, sys: 13.8 ms, total: 304 ms
Wall time: 305 ms

[29]: fast_index_accuracy_stats = accuracy_per_query_point(fast_neighbors, tree_neighbors)
sns.distplot(fast_index_accuracy_stats, kde=False)
plt.title("Distribution of accuracy per query point")
plt.xlabel("Accuracy")
print(f"Average accuracy of {np.mean(fast_index_accuracy_stats)}")

Average accuracy of 0.6279

The results are not that accurate – there are some query points that got no neighbors right (although it likely still got
close-by points). However is speed is of the essence we have gotten under the time we were previously capable of with
an epsilon of 0.0. Depending on your needs, and the nature of your dataset you can play with n_neighbors to
find the trade-off between speed and accuracy that best suits you.

The next step is diversify_prob. When PyNNDescent is constructing it’s graph based index it tries to “diversify”

2.1. How to use PyNNDescent 17

pynndescent, Release 0.5.0

the edges, pruning away some that are largely redundant. The value of diversify_prob is the probability that
an edge identified as redundant will get pruned. The more edges that get pruned away the less accurate the index
is, but with fewer edges searching becomes much faster. If you want as accurate an index as you can get then turn
diversify_prob to 0.0. For speed you should obviously use 1.0 and prune away as many edges as you can.
The default value is, in fact, 1.0 since it is usually worth it to edges identified by the diversify step. Let’s try setting
it to 0.0 and see how that effects speed and accuracy.

[30]: %%time
accurate_index = pynndescent.NNDescent(fmnist_train, n_neighbors=50, diversify_prob=0.
→˓0)
accurate_index.prepare()

CPU times: user 1min 47s, sys: 1.07 s, total: 1min 48s
Wall time: 40.6 s

[31]: %%time
accurate_neighbors = accurate_index.query(fmnist_test, epsilon=0.2)

CPU times: user 3.04 s, sys: 37.6 ms, total: 3.07 s
Wall time: 3.12 s

[32]: acc_index_accuracy_stats = accuracy_per_query_point(accurate_neighbors, tree_
→˓neighbors)
sns.distplot(acc_index_accuracy_stats, kde=False)
plt.title("Distribution of accuracy per query point")
plt.xlabel("Accuracy")
print(f"Average accuracy of {np.mean(acc_index_accuracy_stats)}")

Average accuracy of 0.9999299999999999

At this point out of ten-thousand query points, each with 10 neighbors, we are getting a grand total of eight wrong –
that’s eight out of a hundred-thousand! Of course our query time is up to several seconds now, but that still beats the

18 Chapter 2. Installing

pynndescent, Release 0.5.0

many minutes of the kd-trees by a wide margin.

We still have one parameter left however – the pruning_degree_multplier. This gives the multiple of the
number of neighbors many edges that any given vertex in the search graph is allowed to have. So if n_neighbors
is 30 and the pruning_degree_multiplier is the default 1.5 then any vertex in the graph can have at most
forty-five edges connected to it. This prevents hubs (which form in high dimensional spaces) causing the search stage
to blow out in complexity. It can be tuned, however, to trade off between speed and accuracy. Higher multiples result
in more accurate graphs with more edges that take longer to search. Low multiples (including less than one!) result in
graphs with many fewer edges that are fast to search, but may get stuck in local minima or fail to find the true nearest
neighbors. Let’s play with that dial for a moment. . .

[33]: %%time
accurate_index = pynndescent.NNDescent(

fmnist_train,
n_neighbors=50,
diversify_prob=0.0,
pruning_degree_multiplier=3.0

)
accurate_index.prepare()

CPU times: user 1min 47s, sys: 1.35 s, total: 1min 48s
Wall time: 41.2 s

[34]: %%time
accurate_neighbors = accurate_index.query(fmnist_test, epsilon=0.2)

CPU times: user 3.65 s, sys: 69.9 ms, total: 3.72 s
Wall time: 3.71 s

[35]: acc_index_accuracy_stats = accuracy_per_query_point(accurate_neighbors, tree_
→˓neighbors)
sns.distplot(acc_index_accuracy_stats, kde=False)
plt.title("Distribution of accuracy per query point")
plt.xlabel("Accuracy")
print(f"Average accuracy of {np.mean(acc_index_accuracy_stats)}")

Average accuracy of 1.0

2.1. How to use PyNNDescent 19

pynndescent, Release 0.5.0

By turning up the pruning_degree_multiplier we have achieved perfect accuracy – and still at a very tiny
fraction of the query time required for the exact kd-tree query. Of course on a different more complex dataset these
same settings may not suffice. Ultimately what we lose is the guarantee that we will get the true nearest neighbors.

We can turn the dial the other way, however, and get very fast searching that is potentially still fairly accurate (compared
to the very low n_neighbors version).

[36]: %%time
fast_index = pynndescent.NNDescent(

fmnist_train,
n_neighbors=10,
diversify_prob=1.0,
pruning_degree_multiplier=0.5,

)
fast_index.prepare()

/Users/leland/anaconda3/envs/numba51/lib/python3.8/site-packages/scipy/sparse/_index.
→˓py:124: SparseEfficiencyWarning: Changing the sparsity structure of a csr_matrix is
→˓expensive. lil_matrix is more efficient.
self._set_arrayXarray(i, j, x)

CPU times: user 27.2 s, sys: 1.14 s, total: 28.3 s
Wall time: 11.3 s

[37]: %%time
fast_neighbors = fast_index.query(fmnist_test, epsilon=0.0)

CPU times: user 302 ms, sys: 16 ms, total: 318 ms
Wall time: 317 ms

20 Chapter 2. Installing

pynndescent, Release 0.5.0

[38]: fast_index_accuracy_stats = accuracy_per_query_point(fast_neighbors, tree_neighbors)
sns.distplot(fast_index_accuracy_stats, kde=False)
plt.title("Distribution of accuracy per query point")
plt.xlabel("Accuracy")
print(f"Average accuracy of {np.mean(fast_index_accuracy_stats)}")

Average accuracy of 0.65031

In general this isn’t a good idea, but it gives you an idea of the trade-offs that can be made.

2.1.3 Nearest neighbors of the training set

While querying for nearest neighbors of new points is a common use case, for many tasks, such as manifold learning
or density based clustering, you want the nearest neighbors of all the points in the training set. You could build the
index and then query for all the training points – but because PyNNDescent builds a nearest neighbor graph as part
of its index you can actually get there faster by just building the index and extracting the results directly. This is, for
example, what libraries like UMAP and OpenTSNE do.

This is why the prepare step is kept separate. It is extra overhead, preparing the index to be queried for new unseen
data, that isn’t required for the use case of simply extracting the nearest neighbors of the full training set. Thus if we
just build, but don’t prepare, the index:

[39]: %%time
index = pynndescent.NNDescent(fmnist_train)

CPU times: user 36.5 s, sys: 375 ms, total: 36.9 s
Wall time: 14.8 s

We can then extract the nearest neighbors of each training sample by using the neighbor_graph attribute.

2.1. How to use PyNNDescent 21

https://github.com/lmcinnes/umap
https://github.com/pavlin-policar/openTSNE

pynndescent, Release 0.5.0

[40]: index.neighbor_graph

[40]: (array([[0, 25719, 27655, ..., 38300, 4643, 7353],
[1, 42564, 37550, ..., 12169, 50358, 49552],
[2, 53513, 35424, ..., 16891, 29542, 40182],
...,
[59997, 45348, 22272, ..., 58896, 53292, 11657],
[59998, 17378, 8495, ..., 4389, 23426, 34912],
[59999, 11912, 40600, ..., 31966, 45245, 58489]]),

array([[0. , 1188.7826 , 1215.344 , ..., 1417.4388 , 1422.567 ,
1424.7806],
[0. , 1048.0482 , 1068.395 , ..., 1219.923 , 1222.1665 ,
1225.5464],
[0. , 532.61993, 632.16534, ..., 885.45245, 886.3972 ,
887.8125],

...,
[0. , 1086.2596 , 1118.3738 , ..., 1303.3699 , 1306.9954 ,
1308.5958],
[0. , 685.18243, 690.4209 , ..., 795.6589 , 796.894 ,
797.1349],

[0. , 884.41394, 886.4903 , ..., 1048.9224 , 1049.3502 ,
1051.806]], dtype=float32))

The first array is n_samples by n_neighbors such that the ith row contains the n_neighbors nearest neigh-
bors of the ith data point. The second array is the associated distances to each of those neighboring points. From the
distance array you can see that each row is sorted, with the closest neighbors first, and the furthest last.

If you are simply wanting to extract this sort of data for further processing this is the fastest way to do it, and since
you only need to run the index build and not actually query for any data, this can often be faster than some other
approximate nearest neighbor techniques that need to be queried after being constructed.

2.2 PyNNDescent with different metrics

In the initial tutorial we looked at how to get PyNNDescent running on your data, and how to query the indexes it
builds. Implicit in all of that was the measure of distance used to determine what counts as the “nearest” neighbors.
By default PyNNDescent uses the euclidean metric (because that is what people generally expect when they talk
about distance). This is not the only way to measure distance however, and is often not the right choice for very high
dimensional data for example. Let’s look at how to use PyNNDescent with other metrics.

First we’ll need some libraries, and some test data. As before we will use ann-benchmarks for data, so we will reuse
the data download function from the previous tutorial.

[1]: import pynndescent
import numpy as np
import h5py
from urllib.request import urlretrieve
import os

[2]: def get_ann_benchmark_data(dataset_name):
if not os.path.exists(f"{dataset_name}.hdf5"):

print(f"Dataset {dataset_name} is not cached; downloading now ...")
urlretrieve(f"http://ann-benchmarks.com/{dataset_name}.hdf5", f"{dataset_name}

→˓.hdf5")
hdf5_file = h5py.File(f"{dataset_name}.hdf5", "r")
return np.array(hdf5_file['train']), np.array(hdf5_file['test']), hdf5_file.attrs[

→˓'distance']

22 Chapter 2. Installing

pynndescent, Release 0.5.0

2.2.1 Built in metrics

Let’s grab some data where euclidean distance doesn’t make sense. We’ll use the NY-Times dataset, which is a TF-IDF
matrix of data generated from NY-Times news stories. The particulars are less important here, but what matters is that
the most sensible way to measure distance on this data is with an angular metric, such as cosine distance.

[3]: nytimes_train, nytimes_test, distance = get_ann_benchmark_data('nytimes-256-angular')
nytimes_train.shape

[3]: (290000, 256)

Now that we have the data we can check the distance measure suggested by ann-benchmarks

[4]: distance

[4]: 'angular'

So an angular measure of distance – cosine distance will suffice. How do we manage to get PyNNDescent working
with cosine distance (which isn’t even a real metric! it violates the triangle inequality) instead of standard euclidean?

[5]: %%time
index = pynndescent.NNDescent(nytimes_train, metric="cosine")
index.prepare()

/Users/leland/anaconda3/envs/umap_0.5dev/lib/python3.8/site-packages/scipy/sparse/_
→˓index.py:126: SparseEfficiencyWarning: Changing the sparsity structure of a csr_
→˓matrix is expensive. lil_matrix is more efficient.
self._set_arrayXarray(i, j, x)

CPU times: user 5min 29s, sys: 6.4 s, total: 5min 35s
Wall time: 2min 9s

That’s right, it uses the scikit-learn standard of the metric keyword and accepts a string that names the metric. We
can now query the index, and it will use that metric in the query as well.

[6]: %%time
neighbors = index.query(nytimes_train)

CPU times: user 20.3 s, sys: 387 ms, total: 20.7 s
Wall time: 21.2 s

/Users/leland/anaconda3/envs/umap_0.5dev/lib/python3.8/site-packages/pynndescent/
→˓pynndescent_.py:1628: RuntimeWarning: invalid value encountered in correct_
→˓alternative_cosine
dists = self._distance_correction(dists)

It is worth noting at this point that these results will probably be a little sub-optimal since angular distances are harder
to index, and as a result to get the same level accuracy in the nearest neighbor approximation we should be using a
larger value than the default 30 for n_neighbors. Beyond that, however, nothing else changes from the tutorial
earlier – except that we can’t use kd-trees to learn the true neighbors, since they require distances that respect the
triangle inequality.

How many metrics does PyNNDescent support out of the box? Quite a few actually:

[7]: for dist in pynndescent.distances.named_distances:
print(dist)

euclidean
l2
sqeuclidean

(continues on next page)

2.2. PyNNDescent with different metrics 23

https://en.wikipedia.org/wiki/Tf%E2%80%93idf

pynndescent, Release 0.5.0

(continued from previous page)

manhattan
taxicab
l1
chebyshev
linfinity
linfty
linf
minkowski
seuclidean
standardised_euclidean
wminkowski
weighted_minkowski
mahalanobis
canberra
cosine
dot
correlation
hellinger
haversine
braycurtis
spearmanr
kantorovich
wasserstein
tsss
true_angular
hamming
jaccard
dice
matching
kulsinski
rogerstanimoto
russellrao
sokalsneath
sokalmichener
yule

Some of these are repeats or alternate names for the same metric, and some of these are fairly simple, but others, such
as spearmanr, or hellinger are useful statistical measures not often implemented elsewhere, and others, such as
wasserstein are complex and hard to compute metrics. Having all of these readily available in a fast approximate
nearest neighbor library is one of PyNNDescent’s strengths.

2.2.2 Custom metrics

We can go even further in terms of interesting metrics however. You can write your own custom metrics and hand
them to PyNNDescent to use on your data. There, of course, a few caveats with this. Many nearest neighbor libraries
allow for the possibility of user defined metrics. If you are using Python this often ends up coming in two flavours:

1. Write some C, C++ or Cython code and compile it against the library itself

2. Write a python distance function, but lose almost all performance

With PyNNDescent we get a different trade-off. Because we use Numba for just-in-time compiling of Python code
instead of a C or C++ backend you don’t need to do an offline compilation step and can instead have your custom
Python distance function compiled and used on the fly. The cost for that is that the custom distance function you write
must be a numba jitted function. This, in turn, means that you can only use Python functionality that is ‘supported
by numba <>‘__. That is still a fairly large amount of functionality, especially when we are talking about numerical

24 Chapter 2. Installing

http://numba.pydata.org/

pynndescent, Release 0.5.0

work, but it is a limit. It also means that you will need to import numba and decorate your custom distance function
accordingly. Let’s look at how to do that.

[8]: import numba

Let’s start by simply implementing euclidean distance where 𝑑(x,y) =
√︀∑︀

𝑖(x𝑖 − y𝑖)2. This is already implemented
in PyNNDescent, but it is a simple distance measure that everyone knows and will serve to illustrate the process. First
let’s write the function – using numpy functionality this will be fairly short:

[9]: def euclidean(x, y):
return np.sqrt(np.sum((x - y)**2))

Now we need to get the function compiled so PyNNDescent can use it. That is actually as easy as adding a decorator
to the top of the function telling numba that it should compile the function when it gets called.

[10]: @numba.jit
def euclidean(x, y):

return np.sqrt(np.sum((x - y)**2))

We can now pass this function directly to PyNNdescent as a metric and everything will “just work”. We’ll just train
on the smaller test set since it will take a while.

[11]: %%time
index = pynndescent.NNDescent(nytimes_test, metric=euclidean)

CPU times: user 21.5 s, sys: 220 ms, total: 21.7 s
Wall time: 12 s

This is a little slower than we might have expected, and that’s because a great deal of the computation time is spent
evaluating that metric. While numba will compile what we wrote we can make it a little faster if we look through
the numba performance tips documentation. The two main things to note are that we can use explicit loops instead
of numpy routines, and we can add arguments to the decorator such as fastmath=True to speed things up a little.
Let’s rewrite it:

[12]: @numba.jit(fastmath=True)
def euclidean(x, y):

result = 0.0
for i in range(x.shape[0]):

result += (x[i] - y[i])**2
return np.sqrt(result)

[13]: %%time
index = pynndescent.NNDescent(nytimes_test, metric=euclidean)

CPU times: user 12.3 s, sys: 116 ms, total: 12.4 s
Wall time: 8.53 s

That is faster! If we are really on the hunt for performance however, you might note that, for the purposes of finding
nearest neighbors the exact values of the distance are not as important as the ordering on distances. In other words
we could use the square of euclidean distance and we would get all the same neighbors (since the square root is a
monotonic order preserving function of squared euclidean distance). That would, for example, save us a square root
computation. We could do the square roots afterwards to just the distances to the nearest neighbors. Let’s reproduce
what PyNNDescent actually uses internally for euclidean distance:

[14]: @numba.njit(
[

"f4(f4[::1],f4[::1])",

(continues on next page)

2.2. PyNNDescent with different metrics 25

https://numba.readthedocs.io/en/stable/user/performance-tips.html

pynndescent, Release 0.5.0

(continued from previous page)

numba.types.float32(
numba.types.Array(numba.types.float32, 1, "C", readonly=True),
numba.types.Array(numba.types.float32, 1, "C", readonly=True),

),
],
fastmath=True,
locals={

"result": numba.types.float32,
"diff": numba.types.float32,
"dim": numba.types.uint32,
"i": numba.types.uint16,

},
)
def squared_euclidean(x, y):

r"""Squared euclidean distance.

.. math::
D(x, y) = \sum_i (x_i - y_i)^2

"""
result = 0.0
dim = x.shape[0]
for i in range(dim):

diff = x[i] - y[i]
result += diff * diff

return result

That is definitely more complicated! Most of it, however, is arguments to the decorator giving it extra typing infor-
mation to let it squeeze out every drop of performance possible. By default numba will infer types, or even compile
different versions for the different types it sees. With a little extra information, however, it can make smarter decisions
and optimizations during compilation. Let’s see how fast that goes:

[15]: %%time
index = pynndescent.NNDescent(nytimes_test, metric=squared_euclidean)

CPU times: user 10.6 s, sys: 96.2 ms, total: 10.7 s
Wall time: 7.64 s

Definitely faster again – so there are significant gains to be had if you are willing to put in some work to write your
function. Still, the naive approach we started with, just decorating the obvious implementation, did very well, so
unless you desperately need top tier performance for your custom metric a straightforward approach will suffice. And
for comparison here is the tailored C++ implementation that libraries like nmslib and hnswlib use:

static float
L2SqrSIMD16Ext(const void *pVect1v, const void *pVect2v, const void *qty_ptr) {

float *pVect1 = (float *) pVect1v;
float *pVect2 = (float *) pVect2v;
size_t qty = *((size_t *) qty_ptr);
float PORTABLE_ALIGN32 TmpRes[8];
size_t qty16 = qty >> 4;

const float *pEnd1 = pVect1 + (qty16 << 4);

__m256 diff, v1, v2;
__m256 sum = _mm256_set1_ps(0);

(continues on next page)

26 Chapter 2. Installing

https://github.com/nmslib/nmslib
https://github.com/nmslib/hnswlib

pynndescent, Release 0.5.0

(continued from previous page)

while (pVect1 < pEnd1) {
v1 = _mm256_loadu_ps(pVect1);
pVect1 += 8;
v2 = _mm256_loadu_ps(pVect2);
pVect2 += 8;
diff = _mm256_sub_ps(v1, v2);
sum = _mm256_add_ps(sum, _mm256_mul_ps(diff, diff));

v1 = _mm256_loadu_ps(pVect1);
pVect1 += 8;
v2 = _mm256_loadu_ps(pVect2);
pVect2 += 8;
diff = _mm256_sub_ps(v1, v2);
sum = _mm256_add_ps(sum, _mm256_mul_ps(diff, diff));

}

_mm256_store_ps(TmpRes, sum);
return TmpRes[0] + TmpRes[1] + TmpRes[2] + TmpRes[3] + TmpRes[4] + TmpRes[5] +

→˓TmpRes[6] + TmpRes[7];
}

Comparatively, the python code, even with its extra numba decorations, looks pretty straightforward. Notably (at last
testing) the numba code and this C++ code (when suitably compiled with AVX flags etc.) have essentially indistin-
guishable performance. Numba is awfully good at finding optimizations for numerical code.

Beware of bounded distances

There is one remaining caveat on custom distance functions that is important. Many distances, such as cosine distance
and jaccard distance are bounded: the values always fall in some fixed finite range (in these cases between 0 and 1).
When querying new data points against an index PyNNDescent bounds the search by some multiple (1 + epsilon) of
the most distant of the the top k neighbors found so far. This allows a limited amount of backtracking and avoids
getting stuck in local minima. It does, however, not play well with bounded distances – a small but non-zero epsilon
can end up failing to bound the search at all (suppose epsilon is 0.2 and the most distant of the the top k neighbors
has cosine distance 0.8 for example). The trick to getting around this is the same trick described above when we
decided not to bother taking the square root of the euclidean distance – we can apply transform to the distance values
that preserves all ordering. This means that, for example, internally PyNNDescent uses the negative log of the cosine
similarity instead of cosine distance (and converts the distance values when done). You will want to use a similar trick
if your distance function has a strict finite upper bound.

2.3 Working with sparse data

Not all data conveniently fits in numpy arrays; sometimes a lot of the data entries are zero and we want to use a
sparse data storage format. This is especially common for extremely high dimensional data (data with thousands, or
even hundreds of thousands of dimensions). Such data is a lot harder to work with for many tasks, including nearest
neighbor search. Let’s see how we can work with sparse data like this in PyNNDescent.

First we’ll need some data. For that let’s use a standard NLP dataset that we can pull together with scikit-learn.

[9]: import pynndescent
import sklearn.datasets
import sys

2.3. Working with sparse data 27

pynndescent, Release 0.5.0

We need to fetch the train and test sets separately, but conveniently the data has already been converted from the text of
newsgroup messages into TF-IDF matrices. This means that we have a feature column for each word in the vocabulary
– though often the vocabulary is pruned a little.

[2]: news_train = sklearn.datasets.fetch_20newsgroups_vectorized(subset='train')
news_test = sklearn.datasets.fetch_20newsgroups_vectorized(subset='test')

Now that we have the data let’s see what it looks like:

[3]: news_train.data

[3]: <11314x130107 sparse matrix of type '<class 'numpy.float64'>'
with 1787565 stored elements in Compressed Sparse Row format>

Not a numpy array! Instead it is a SciPy sparse matrix. It has 11314 rows (so not many data samples), but 130107
columns (a lot of features – as noted, one for each word in the vocabulary). Despite that large size there are only
17876565 non-zero entries. The trick with sparse matrices is that they only store information about those entries that
aren’t zero – they need to keep track of where they are, and what the value is, but they can ignore all the zero entries.
If this were a raw numpy array with all those zeros in place it would have . . .

[7]: 11314 * 130107

[7]: 1472030598

. . . a lot of entries. To store all of that in memory would require (at 4 bytes per entry) . . .

[8]: (11314 * 130107 * 4) / 1024**3

[8]: 5.48374130576849

. . . almost 5.5 GB! That is possible, but likely impractical on a laptop. And this is for a case with a small number of
data samples. With more samples the size would grow enormous very quickly indeed. Instead we have an object that
uses . . .

[13]: (
news_train.data.data.nbytes
+ news_train.data.indices.size
+ news_train.data.indptr.nbytes

) / 1024**2

[13]: 15.385956764221191

. . . only 15 MB. You will also note that to extract that information required poking at some of the internal attributes
of the sparse matrix (data, indices, and indptr). This is the downside of the sparse format – they are more
complicated to work with. It is certainly the case that many tools are simply not able to deal with these sparse
structures at all, and the data would need to be cast to a numpy array and take up that full amount of memory.

Fortunately PyNNDescent is built to work with sparse matrix data. To see that in practice let’s hand the sparse matrix
directly to NNDescent and watch it work.

[4]: %%time
index = pynndescent.NNDescent(news_train.data, metric="cosine")

CPU times: user 7min 3s, sys: 1.77 s, total: 7min 5s
Wall time: 2min 24s

You will note that this is a much longer index construction time than we would normally expect with only around
eleven thousand data points – there is overhead in working with sparse matrices that makes it slower. That, combined
with the fact that the data has over a hundred and thirty-thousand dimensions means this is a computationally intensive

28 Chapter 2. Installing

https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://docs.scipy.org/doc/scipy/reference/sparse.html

pynndescent, Release 0.5.0

task. Still it is likely better than working with the full 5.5 GB numpy array, and certainly better when dealing with
larger sparse matrices where there is simply no way to instantiate a numpy array large enough to hold the data.

We can query the index – but we have to use the same sparse matrix structure (we can’t query with numpy arrays for
am index built with sparse data). Fortunately the test data is already in that format so we can simply perform the query:

[5]: %%time
neighbors = index.query(news_test.data)

CPU times: user 1min 25s, sys: 1.5 s, total: 1min 26s
Wall time: 1min 26s

And that’s it! Everything works essentially transparently with sparse data – it is just slower. Still, slower is a lot better
than not working at all.

[6]: neighbors

[6]: (array([[1635, 4487, 9220, ..., 10071, 9572, 1793],
[8648, 567, 2123, ..., 783, 6031, 9275],
[7345, 4852, 4674, ..., 1679, 7518, 4228],
...,
[6137, 10518, 6469, ..., 6937, 11083, 6164],
[2926, 2011, 1679, ..., 7229, 1635, 11270],
[3215, 3665, 4899, ..., 10810, 9907, 9311]], dtype=int32),

array([[0.34316891, 0.34799916, 0.35074973, ..., 0.35952544, 0.36456954,
0.36472946],
[0.25881797, 0.26937056, 0.28056568, ..., 0.29210907, 0.29795945,
0.29900843],
[0.41124642, 0.42213005, 0.4426493 , ..., 0.46922857, 0.4724912 ,
0.47429329],
...,
[0.21533132, 0.22482073, 0.24046886, ..., 0.26193857, 0.26805884,
0.26866162],
[0.19485909, 0.19515198, 0.19891578, ..., 0.20851403, 0.21159202,
0.21265447],
[0.43528455, 0.43638128, 0.4378109 , ..., 0.45176154, 0.452402 ,
0.45243692]]))

One final caveat is that custom distance metrics for sparse data need to be able to work with sparse data and thus have
a different function signature. In practice this is really something you only want to try if you are familiar with working
with sparse data structures. If that’s the case then you can look through pynndescent.sparse.py for examples
of many common distance functions and it will quickly become clear what is required.

2.4 Working with Scikit-learn pipelines

Nearest neighbor search is a fundamental building block of many machine learning algorithms, including in supervised
learning with kNN-classifiers and kNN-regressors, and unsupervised learning with manifold learning, and clustering.
It would be useful to be able to bring the speed of PyNNDescent’s approximate nearest neighbor search to bear on
these problems without having to re-implement everything from scratch. Fortunately Scikit-learn has done most of
the work for us with their KNeighborsTransformer, which provides a means to insert nearest neighbor computations
into sklearn pipelines, and feed the results to many of their models that make use of nearest neighbor computations.
It is worth reading through the documentation they have, because we are going to use PyNNDescent as a drop in
replacement.

To make this as simple as possible PyNNDescent implements a class PyNNDescentTransformer that acts as a
KNeighborsTransformer and can be dropped into all the same pipelines. Let’s see an example of this working
. . .

2.4. Working with Scikit-learn pipelines 29

https://scikit-learn.org/stable/modules/neighbors.html#neighbors-transformer

pynndescent, Release 0.5.0

[1]: from sklearn.manifold import Isomap, TSNE
from sklearn.neighbors import KNeighborsTransformer
from pynndescent import PyNNDescentTransformer
from sklearn.pipeline import make_pipeline
from sklearn.datasets import fetch_openml
from sklearn.utils import shuffle

import seaborn as sns

As usual we will need some data to play with. In this case let’s use a random subsample of MNIST digits.

[2]: def load_mnist(n_samples):
"""Load MNIST, shuffle the data, and return only n_samples."""
mnist = fetch_openml("mnist_784")
X, y = shuffle(mnist.data, mnist.target, random_state=2)
return X[:n_samples] / 255, y[:n_samples]

[3]: data, target = load_mnist(10000)

Now we need to make a pipeline that feeds the nearest neighbor results into a downstream task. To demonstrate how
this can work we’ll try manifold learning. First we will try out Isomap and then t-SNE. In both cases we can provide
a “precomputed” distance matrix, and if it is a sparse matrix (as output by KNeighborsTransformer) then any
entry not explicitly provided as a non-zero element of the matrix will be ignored (or treated as an effectively infinite
distance). To make the whole thing work we simple make an sklearn pipeline (and could easily include pre-processing
steps such as categorical encoding, or data scaling and standardisation as earlier steps if we wished) that first uses the
KNeighborsTransformer to process the raw data into a nearest neighbor graph, and then passes that on to either
Isomap or TSNE. For comparison we’ll drop in a PyNNDescentTransformer instead and see how that effects
the results.

[4]: sklearn_isomap = make_pipeline(
KNeighborsTransformer(n_neighbors=15),
Isomap(metric='precomputed')

)
pynnd_isomap = make_pipeline(

PyNNDescentTransformer(n_neighbors=15),
Isomap(metric='precomputed')

)
sklearn_tsne = make_pipeline(

KNeighborsTransformer(n_neighbors=92),
TSNE(metric='precomputed', random_state=42)

)
pynnd_tsne = make_pipeline(

PyNNDescentTransformer(n_neighbors=92, early_termination_value=0.05),
TSNE(metric='precomputed', random_state=42)

)

First let’s try Isomap. The algorithm first constructs a k-nearest-neighbor graph (which our transformers will handle in
the pipeline), then measures distances between points as path lengths in that graph. Finally it performs an eigendecom-
position of the resulting distance matrix. We can do much to speed up the later two steps, which are still non-trivial,
but hopefully we can get some speedup by substituting in the approximate nearest neighbor computation.

[5]: %%time
sklearn_iso_map = sklearn_isomap.fit_transform(data)

CPU times: user 2min 42s, sys: 1.76 s, total: 2min 44s
Wall time: 2min 43s

30 Chapter 2. Installing

https://en.wikipedia.org/wiki/Isomap
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding

pynndescent, Release 0.5.0

[6]: %%time
pynnd_iso_map = pynnd_isomap.fit_transform(data)

CPU times: user 1min 14s, sys: 2.85 s, total: 1min 17s
Wall time: 1min 17s

A two-times speedup is not bad, especially since we only accelerated one component of the full algorithm. It is quite
good considering it was simply a matter of dropping a different class into a pipeline. More importantly as we scale to
larger amounts of data the nearest neighbor search comes to dominate the over algorithm run-time, so we can expect
to only get better speedups for more data. We can plot the results to ensure we are getting qualitatively the same thing.

[7]: sns.scatterplot(x=sklearn_iso_map.T[0], y=sklearn_iso_map.T[1], hue=target, palette=
→˓"Spectral", size=1);

[8]: sns.scatterplot(x=pynnd_iso_map.T[0], y=pynnd_iso_map.T[1], hue=target, palette=
→˓"Spectral", size=1);

Now let’s try t-SNE. This algorithm requires nearest neighbors as a first step, and then the second major part, in
terms of computation time, is the optimization of a layout of a modified k-neighbor graph. We can hope for some
improvement in the first part, which usually accounts for around half the overall run-time for small data (and comes to
consume a majority of the run-time for large datasets).

2.4. Working with Scikit-learn pipelines 31

pynndescent, Release 0.5.0

[9]: %%time
sklearn_tsne_map = sklearn_tsne.fit_transform(data)

CPU times: user 7min 1s, sys: 3.72 s, total: 7min 5s
Wall time: 3min 8s

[10]: %%time
pynnd_tsne_map = pynnd_tsne.fit_transform(data)

CPU times: user 5min 32s, sys: 3.7 s, total: 5min 35s
Wall time: 1min 29s

Again we have an approximate two-times speedup. Again this was achieved by simply substituting a different class
into the pipeline (although in the case we tweaked the early_termination_value so it would stop sooner).
Again we can look at the qualitative results and see that we are getting something very similar.

[11]: sns.scatterplot(x=sklearn_tsne_map.T[0], y=sklearn_tsne_map.T[1], hue=target, palette=
→˓"Spectral", size=1);

[12]: sns.scatterplot(x=pynnd_tsne_map.T[0], y=pynnd_tsne_map.T[1], hue=target, palette=
→˓"Spectral", size=1);

So the results, in both cases, look pretty good, and we did get a good speed-up. A question remains – how fast was

32 Chapter 2. Installing

pynndescent, Release 0.5.0

the nearest neighbor component, and how accurate was it? We can write a simple function to measure the neighbor
accuracy: compute the average percentage intersection in the neighbor sets of each sample point. Then let’s just run
the transformers and compare the times as well as computing the actual percentage accuracy.

[13]: import numba
import numpy as np

@numba.njit()
def arr_intersect(ar1, ar2):

aux = np.sort(np.concatenate((ar1, ar2)))
return aux[:-1][aux[:-1] == aux[1:]]

@numba.njit()
def neighbor_accuracy_numba(n1_indptr, n1_indices, n2_indptr, n2_indices):

result = 0.0
for i in range(n1_indptr.shape[0] - 1):

indices1 = n1_indices[n1_indptr[i]:n1_indptr[i+1]]
indices2 = n2_indices[n2_indptr[i]:n2_indptr[i+1]]
n_correct = np.float64(arr_intersect(indices1, indices2).shape[0])
result += n_correct / indices1.shape[0]

return result / (n1_indptr.shape[0] - 1)

def neighbor_accuracy(neighbors1, neighbors2):
return neighbor_accuracy_numba(

neighbors1.indptr, neighbors1.indices, neighbors2.indptr, neighbors2.indices
)

[14]: %time true_neighbors = KNeighborsTransformer(n_neighbors=15).fit_transform(data)
%time pynnd_neighbors = PyNNDescentTransformer(n_neighbors=15).fit_transform(data)

print(f"Neighbor accuracy is {neighbor_accuracy(true_neighbors, pynnd_neighbors) *
→˓100.0}%")

CPU times: user 1min 43s, sys: 177 ms, total: 1min 43s
Wall time: 1min 44s
CPU times: user 2.67 s, sys: 49 ms, total: 2.72 s
Wall time: 920 ms
Neighbor accuracy is 99.140625%

So for the Isomap case we went from taking over one and half minutes down to less then a second. While doing so we
still achieved over 99% accuracy in the nearest neighbors. This seems like a good tradeoff.

By constrast t-SNE requires a much larger number of neighbors (approximately three times the desired perplexity
value, which defaults to 30 in sklearn’s implementation). This is a little more of a challenge so we might expect it to
take longer.

[15]: %time true_neighbors = KNeighborsTransformer(n_neighbors=92).fit_transform(data)
%time pynnd_neighbors = PyNNDescentTransformer(n_neighbors=92, early_termination_
→˓value=0.05).fit_transform(data)

print(f"Neighbor accuracy is {neighbor_accuracy(true_neighbors, pynnd_neighbors) *
→˓100.0}%")

CPU times: user 1min 42s, sys: 136 ms, total: 1min 42s
Wall time: 1min 43s
CPU times: user 25.2 s, sys: 545 ms, total: 25.7 s
Wall time: 7.37 s
Neighbor accuracy is 99.96612903225784%

2.4. Working with Scikit-learn pipelines 33

pynndescent, Release 0.5.0

We see that the KNeighborsTransformer takes the same amount of time for this – this is because it is making
the choice, given the dataset size and dimensionality, to compute nearest neighbors by effectively computing the full
distance matrix. That means regardless of how many neighbors we ask for it will take a largely constant amount of
time.

In constrast we see that the PyNNDescentTransformer is having to work harder, taking almost eight seconds
(still a lot better than one and half minutes!). The increased early_termination_value (the default is 0.001)
stops the computation early, but even with this we are still getting over 99.9% accuracy! Certainly the minute and
a half saved in computation time at this step is worth the drop of 0.033% accuracy in nearest neighbors. And these
differences in computation time will only increase as dataset sizes get larger.

2.5 How PyNNDescent works

PyNNDescent uses neighbor graph based searching to efficiently find good candidates for the nearest neighbors of
query points from a large training set. While the basic ideas turn out to be quite simple, the layers of refinements and
tricks used to get the highest degree of efficiency complicate things a lot. With that in mind we will begin with the
simple naive approach and gradually work out further refinements and details as we go. The core concept, upon which
most everything else is based, is using a nearest neighbor graph to perform a search for approximate nearest neighbors.

2.5.1 Searching using a nearest neighbor graph

Suppose we are given a nearest neighbor graph (let’s ignore, for now, how we can have obtained such a thing without
the ability to find nearest neighbors already). By a graph, I simply mean a network – a set of nodes connected by
edges. By a nearest neighbor graph I mean that the graph has been derived from data existing in some sort of space
for which we have a quantitative notion of similarity, or dissimilarity, or distance. In particular the graph is derived
by making each data point a node and connecting that data point, via edges, to the 𝑘 most similar, least dissimilar, or
closest other points. We would like to use this graph as an index structure for searching to find the nearest neighbors
(points in the graph) of a new query point (potentially not a point in the graph) with respect to that notion of similarity
of distance. How can we do this? We can do it via a kind of pruned breadth-first search of the graph, always keeping
only the 𝑘 best points we’ve found so far. The algorithm, therefore, looks something like this:

1. Choose a starting node in the graph (potentially randomly) as a candidate node

2. Look at all nodes connected by an edge to the best untried candidate node in the graph

3. Add all these nodes to our potential candidate pool

4. Sort the candidate pool by closeness / similarity to the query point

5. Truncate the pool to 𝑘 best (as in closest to the query) candidates

6. Return to step 2, unless we have already tried all the candidates in the pool

We can see this play out visually on a small graph. For this case we will let 𝑘 = 2 and have a 2-neighbor graph
constructed by points in a plane. The query point will be drawn as an orange ‘x’. We then search, exactly as described,
and find ourselves steadily traversing the graph towards the query point.

While that did indeed find the points closest to the query point, it was hardly more efficient than a linear search of all
the points – there are only two points we didn’t try! This is ultimately about having such a small graph: while it is
good for showing the algorithm clearly, the algorithm doesn’t really scale down that well to this case. If we want to
see it providing benefits we’ll need a larger graph. That’s not hard to generate, so let’s see a larger example.

Now, with about as bad a start as we could hope to get, the algorithm efficiently traverses across the graph and find the
neighbors of the orange query point, and this time we see that only a small fraction of the total number of points in the
graph had to be tried. If we had been a little luckier with our start point we could have done significantly better again.
We can scale up to even larger examples:

34 Chapter 2. Installing

pynndescent, Release 0.5.0

Again we had about as bad a starting point as possible, but again it very efficiently traverses the graph, steadily
improving as it goes, until the algorithm eventually find the nearest neighbors of the orange query point. Notably the
algorithm will continue to scale well as the number of points increases, and even as the dimension of the data increases
– as long as the data itself has a low enough intrisic dimension.

There are, of course, several things that can be done to refine this algorithm to be a little more efficient, and more
flexible at the same time. They include such things as keeping a hashtable of visited nodes to ensure you don’t
compute distances twice, and keeping a slightly larger priority queue of candidate nodes to expand – anything with
(1+:math:varepsilon) of the 𝑘th best candidate found so far will suffice. This latter point allows us greater flexibility
in search, allowing a degree of backtracking around local “optima” in the search. It also provides a parameter which
we can tune to get a trade-off between the speed and accuracy that we desire: smaller epsilon gives a faster search, but
less accuracy, while a large epsilon can give good accuracy but at the cost of a slower search.

All of this presumed, however, that we had a nearest neighbor graph to start with – the thing that we were using as our
search index. The question remains: how are we to build that, since we could potentially just use the nearest neighbor
search technique used to build the graph (which presumably has to be cheap) instead of the graph search described
here. The answer, as it happens, is that we are going to use the graph search technique to build the graph itself –
pulling ourselves up by our own bootstraps so to speak.

2.5.2 NNDescent for building neighbor graphs

A good way to get to grips with the NNDescent algorithm for constructing approximate k-neighbor graphs is to think
of it in terms of the search algorithm we’ve already described. Suppose we had a decent, but not exact, k-neighbor
graph. We could use that graph as our search index – it won’t be great, and our search will be particularly approximate
and often get stuck in local minima because of that, but it will still work a lot of the time. So, given that graph we
could do a nearest neighbor search, using that graph as the index, for each and every point in the dataset. Because
of the nature of the search we could end up finding new neighbors for a node that are closer than the ones in our
not-so-good graph. We could use that information to update our graph – make it better by using these newly found
closer neighbors. Having improved the graph, we can run the search again for each and every point in the dataset.
Since the graph is better we will do an even better job of finding neighbors than before and potentially find some new
neighbors that will let us update the graph again.

And that’s actually the core of the algorithm. Start with a bad graph, use the nearest neighbor search on that graph to
get better neighbors, and make a better graph. Rinse, repeat, and eventually we will end up with a good graph. In fact,
the better the graph is, the faster and more accurate the search will run. So each iteration will go faster than the last,
and we will steadily converge toward the true k-neighbor graph.

There are a couple things to take note of at this point: a better graph results in a better search, so making a better
graph sooner will help the search; finding a good initial candidate node for the search was generically a problem (our
animations all had particularly bad initial candidates), but we can always use the point itself as the initial candidate
since it is guaranteed to be in the graph. So, given a good initial candidate (the node itself), and a desire to update the
graph as soon as possible, it may not be worth running a full search to exhaustion. Instead we could run the search just
far enough to potentially find some new neighbors that we haven’t seen before. The first round of search, starting from
the node itself, will only find the neighbors we already have. The second round, however, will step out to neighbors
of neighbors (friends of friends if you will), and potentially find some nodes that are closer neighbors than the ones
currently in the graph. That would be enough information to improve the graph – since we would have found new
better neighbors. So the algorithm would now run:

1. Start with a random graph (connect each node to 𝑘 random nodes)

2. For each node:

3. Measure the distance from the node to the neighbors of its neighbors

4. If any are closer then update the graph accordingly, and keep only the 𝑘 closest

5. If any updates were made to the graph then go back to step 2, otherwise stop

2.5. How PyNNDescent works 35

pynndescent, Release 0.5.0

We can see this play out on some example data (the same data as the medium sized search example):

You can see the graph starts out looking nothing like a 𝑘-neighbors graph – just a mess of edges all over with no
structure. Quickly, however, we update the graph, and the better the graph gets the better our updates go. After not
very long at all the algorithm is simply refining an already very good graph with few, if any, updates at all actually
occurring. We can see this most clearly by looking at things in terms of each round of iteration of the algorithm
– consider the graph at the point where we’ve updated neighbors for every node and we are at step 3, considering
whether to loop back to step 2 or not. At each such iteration we can both look at the state of the graph and measure
how close we are to the true 𝑘-neighbor graph. We start with a random graph:

After we have touched each node once and updated the neighbors based on the friends of friends we get the following:

36 Chapter 2. Installing

pynndescent, Release 0.5.0

Already, after just one pass through, the graph looks a whole lot less random. And, indeed, we have already improved
from the sort of accuracy of neighbors we would expect at random, to a graph that has 30% of the neighbors correct
for each node (on average). That is a much better graph for doing searches on than the purely random graph, so we
would expect to be able to do a lot better when we do another iteration performing updates based on friends of friends
in this new much better graph.

2.5. How PyNNDescent works 37

pynndescent, Release 0.5.0

So now after just two passes we already have a graph that is 95% accurate! A search on this graph will be quite
accurate, especially since we are guaranteed to be starting with a good candidate (the query itself). Running another
pass should get a near perfect result.

38 Chapter 2. Installing

pynndescent, Release 0.5.0

The accuracy improved nicely, but you should note that visually there is very little difference between this graph and
the previous graph. Very few edges actually changed in this iteration – the number of new neighbors, closer than any
found so far, is very small. That suggests that from here on out we will get significantly diminishing returns.

2.5. How PyNNDescent works 39

pynndescent, Release 0.5.0

Sure enough there is little improvement this time – the last few nodes for which we do not yet have the correct 𝑘
neighbors are hard to get right with a search from this graph, and so it will be challenging to make significant further
improvements. Another iteration will improve things further:

40 Chapter 2. Installing

pynndescent, Release 0.5.0

but this is where it stops. Further iterations fail to find any further improvements for the graph. We can’t get to 100%
accuracy in this case. Still, 99.6% accuracy is pretty good, and will be good enough enough to be an effective search
index for new previously unseen queries.

This provides us with the basic algorithm, which is already surprisingly efficient and, importantly, doesn’t rely on
specific properties of the dissimilarity (such as requiring the triangle inequality) beyond the requirement that “friends
of friends” should be a good source of candidate neighbors. There are a number of computational considerations that
can dramatically improve practical runtime performance however. Let’s look at a few of the major ones, particularly
since they involve looking at the algorithm in a different way and result in code that looks very dissimilar from what
has been described so far, despite the fact that this is essentially what it is implementing.

The first major consideration is that the search should take place on an undirected graph. That means that when
looking at neighbors of a node we need to consider not only the 𝑘 neighbors that the node has edges to, but also all
the other nodes that have our chosen node as one of their 𝑘 neighbors, often called the “reverse nearest neighbors”.
While it is easy to keep track of the top 𝑘 neighbors for each node, it is much harder to keep track of the reverse
nearest neighbors for each node, and updating that information as the graph changes becomes challenging. For this
reason (among others) it becomes beneficial to compute the combined set of neighbors and reverse nearest neighbors
for each node based on the graph once at the start of an iteration and use that information while updating the graph in
the background. In a sense we are holding the search graph fixed for the iteration, and then applying all the updates at
the end.

The second major consideration is a useful inversion of how we look at the problem. Ultimately for each node we
need to look at the neighbors of its neighbors, which involves two hops through the graph. From the point of view of
the green node we might view it as looking something like this:

2.5. How PyNNDescent works 41

pynndescent, Release 0.5.0

Since all our work will be on length two paths like this however, we can potentially flip our point of view around
and center ourselves at the blue node. From the blue node’s point of view the goal here is have the red and the green
node consider adding each other to each others 𝑘 nearest neighbor lists. This flipped viewpoint saves us from some
doubled work (we just need to get green and red to talk to each other at once, rather than traversing the path once from
green, and then much later the other way from red), but it also turns what was a graph walking algorithm into one that
is entirely local to each node: having found the sets of neighbors and reverse neighbors for every node as described
above, we simply need to do an all-pairs comparison between the nodes of each such set, having each possible pairing
act as the red and green nodes attached to a common node:

Putting these two considerations together we arrive at an approach that first generates a set of “neighbors” (both neigh-
bors and reverse neighbors) for each node, then generates graph updates by doing an all-pairs distance computation on
each set. After the first step of computing the reverse neighbors the all-pairs computations can all run independently in
parallel, saving off the updates from each neighbor set which can then be sorted and applied to update the graph. While
this is executing the same notional algorithm, viewing it this way allows for easy parallelism options, and for further
efficiency tweaks: keep track of which “neighbors” are new to a set and only worry about distance computations to
nodes new to the set; restrict the number of elements in the set for any iteration; exit early when the number of updates
falls below a (proportional) threshold; etc.

In the end we arrive at a parallelizable algorithm that can compute an approximate 𝑘-neighbor graph of a dataset
extremely efficiently. Better still it does this, much as our search algorithm did, with few constraints: we require a

42 Chapter 2. Installing

pynndescent, Release 0.5.0

dissimilarity that has a “friend-of-a-friend” principle, and that the intrinsic dimension (as opposed to the apparent or
ambient dimension) of the dataset is not too large. Is there any way we can speed this up at all?

2.5.3 Random projection trees for initialization

Random projection trees are an efficient approach to approximate nearest neighbor search for spatial data (i.e. data
that has a vector space representation). The idea is simple enough: start by choosing a random hyperplane that splits
the data in two (one can arrange a split by choosing two random points and taking the hyperplane to be the orthogonal
hyperplane halfway between them – in either a euclidean or angular sense, depending on the distance metric); for each
half choose a different random hyperplane to split that subset of the data; keep repeating this until each subset is at
most some chosen size (usually called the “leaf size” of the tree). This simplistic approach manages to recursively
partition up the data into conveniently sized buckets. The random hyperplanes serve two purposes: first by being
at random orientations the resulting trees adapt well to high dimensional data (unlike other tree approaches such as
kd-trees); second, by being randomized we can easily build many such trees that are all different. The problem with
random projection trees for nearest neighbor search is that for a given query the nearest neighbors may be on the wrong
side of one of those random splits, and if we just search the bucket of points in the leaf the query falls in we’ll miss
those nearest neighbors. The solution is to have many trees. Since each tree is random, each tree will make different
mistakes in terms of the random splits. In aggregate, by searching through a whole forest of random projection trees,
the odds of finding the true nearest neighbors becomes pretty good.

So why not just use this for approximate nearest neighbor search? To get adequate accuracy one either needs to use
a very large leaf size (and brute force search through all the points in a leaf), or use a lot of trees. In practice this is
often much slower than the graph based search described above. Still, trees are very cheap to build, and the search
can be very fast for a single tree, so can we use them somehow? Recall that we started our graph off with a random
initialization, but that the better our graph was the faster each iteration ran and the better the iteration was at finding
good neighbors. Could we use random projection trees to find a good starting point for the graph? It doesn’t have to
be very good, just better than random. Better than random is not that hard to beat. So we can build a very small forest
of random projection trees (small by the standard of the number of trees you would use if you wanted reasonable
accuracy queries), and initialize our graph with it. How do we use the trees if we aren’t using them on new query
points? Each leaf node of the tree is a bucket for which we can do an all-pairs distance computation, and each node in
the graph can get an initial 𝑘 edges based on the results of the bucket it was in. This can all be done very quickly and
entirely in parallel for a small number of trees. How well does it work?

Let’s got back to our example data we built the graph for in the last section. This time we’ll use just one random
projection tree to initialize things, and then proceed with nearest neighbor descent as before.

2.5. How PyNNDescent works 43

pynndescent, Release 0.5.0

As you can see, even with only a single tree we get off to a good start; in this case 70% correct. For more difficult data
in higher dimensions things won’t go this well, but as we observed above, once you have a somewhat decent graph
NNDescent proceeds very efficiently:

44 Chapter 2. Installing

pynndescent, Release 0.5.0

Since we started from a better graph after only one iteration of NNDescent we have already got to 98% accuracy. It
takes only one more iteration of work:

2.5. How PyNNDescent works 45

pynndescent, Release 0.5.0

To get to a point where there are no further gains to be had. The real key is that the initialization can save us early,
and very expensive, iterations. Saving a few of the early and most expensive iterations is a major gain. For this reason
PyNNDescent uses a small forest of random projection trees to get a small head-start on getting a good k-neighbor
graph for NNDescent to perform its iterative improvements on.

2.5.4 Refining the graph for faster searching

Now that we have means to build a k-neighbor graph efficiently, is there any way we can fine tune the graph to make
our nearest neighbor searches run faster? One thing that slows down the search is adding lots of new nodes to the
candidate pool, all of which then need to have the distance to a query point computed. If nodes have many edges
attached then we end up with very large candidate pools, and search can slow significantly. While at first it seems a
simple case of noting that since we built a k-neighbor graph each node has 𝑘 edges, the difference is that search is
conducted on an undirected graph, and this means that a node has not only edges to all the nodes that it thinks are its
neighbors, but also edges to all the nodes that think it is their neighbor. For example, consider this 1-neighbor graph
with five nodes – each node has a single edge to its nearest neighbor.

While each node has a single neighbor and thus a single out-going edge, if we convert to an undirected graph we end
up with this situation:

46 Chapter 2. Installing

pynndescent, Release 0.5.0

We see that the central node has four edges, despite this being a 1-neighbor graph. This can be surprisingly common,
especially for high dimensional data, and the resulting undirected version of the k-neighbor graph can have nodes with
orders of magnitudes more than the k edges you might expect. Pruning edges out of the graph to reduce the number
of edges any one node might have attached is going to be the best way to speed up search. The catch, of course, is that
removing edges can make the search less accurate. Our goal for refining the graph, then, is to remove as many edges
as possible while doing as little harm as possible to the accuracy of any searches performed on the resulting graph.

One immediate possibility simply use the directed graph and throw out all the reverse nearest neighbor edges that are
induced in the undirected case. While this can be effective, it does reduce the accuracy of searches; many of those re-
verse nearest neighbor edges are, in fact, very helpful. We could, instead, take the directed graph plus some amount of
reverse neighbor edges. In cases where a node has few of these edges we can keep them all, but for the cases of nodes,
such as the central node in the example above, that have relatively many reverse neighbor edges attached, we can sim-
ply take the top few of them. This is, in fact, what PyNNDescent does using the pruning_degree_multiplier
parameter. PyNNDescent will keep the top pruning_degree_multiplier * n_neighbors edges for each
node, dropping any edges beyond that number.

Before we perform that kind of pruning, however, we can see if there are some other edges that we might also be able
to drop with little impact on search quality. The answer is yes – specifically we can drop the long edges of triangles.
What do we mean by this? Consider the case where we have a triangle formed of edges like this:

2.5. How PyNNDescent works 47

pynndescent, Release 0.5.0

The short edges are needed to find near neighbors of each of the nodes to which they are attached. However if we
follow our search algorithm we will not need the long edge since the search will traverse the two short edges and find
the same result, just with one extra step / iteration. The expectation that this might slow down search doesn’t play out
in practice – the gains made from removing edges dominates the small extra costs of occasionally having to take extra
steps in a search. We can put together an approach to removing these long edges of triangles as follows:

• For each node in the graph:

1. Retain the first nearest neighbor

2. For each other neighbor:

1. If the neighbor is closer to the node than it is to any currently retained neighbor, then retain it as well

2. If the neighbor is closer to a retained neighbor than the node, then drop it

This process ensures we keep the edges to the closest neighbors, and steadily prune out the long edges of any triangles
that may occur. We can see this pictorially as follows: consider a node (in blue) with several neighbors, and suppose
we have retained all the closer nodes and are considering whether to retain the green node.

48 Chapter 2. Installing

pynndescent, Release 0.5.0

Then, since green is closer to the red node (which we already retained) than it is to the blue node we are working on,
we should drop the edge from blue to green. We can get to the green node from the blue node by traversing through
the red node:

By preprocessing the graph in this way, first removing the long edges of triangles and then pruning back to a maximum
fixed number of edges per node, we can significantly improve the search performance on the graph. Preprocessing
like this is a non-trivial amount of computational work, so by default PyNNDescent doesn’t perform that work unless
specifically asked (a search query is taken to be such a request). This is because the user may be simply interested in
the raw k-neighbor graph of the training data, and not in efficient querying later.

2.5.5 Putting it all together

We now have all the pieces in place. We can construct a k-neighbor graph using NNDescent, initialized using a small
random projection tree forest. We can then refine the resulting graph to optimize it to search for near neighbors of
new query points. For the search we can select a starting point using (the best) random projection tree, ensuring we
start relatively near to neighbors of the query. We then the apply the graph search algorithm we started with to find the
nearest neighbors of the query point. And that is how PyNNDescent works.

2.6 PyNNDescent Performance

How fast is PyNNDescent for approximate nearest neighbor search? How does it compare with other approximate
nearest neighbor search algorithms and implementations? To answer these kinds of questions we’ll make use of the
ann-benchmarks suite of tools for benchmarking approximate nearest neighbor (ANN) search algorithms. The suite
provides a wide array of datasets to benchmark on, and supports a wide array of ANN search libraries. Since the
runtime of these benchmarks is quite large we’ll be presenting results obtained earlier, and only for a selection of
datasets and for the main state-of-the-art implementations. This page thus reflects the performance at a given point
in time, and on a specific choice of benchmarking hardware. Implementations may (and likely will) improve, and
different hardware will likely result in somewhat different performance characteristics amongst the implementations
benchmarked here.

We chose the following implementations of ANN search based on their strong performance in ANN search benchmarks
in general:

• Annoy (a tree based algorithm for comparison)

• HNSW from FAISS, Facebooks ANN library

2.6. PyNNDescent Performance 49

https://github.com/erikbern/ann-benchmarks

pynndescent, Release 0.5.0

• HNSW from nmslib, the reference implementation of the algorithm

• HNSW from hnswlib, a small spinoff library from nmslib

• ONNG from NGT, a more recent algorithm and implementaton with impressive performance

• PyNNDescent version 0.5

Not all the algorithms ran entirely successfully on all the datasets; where an algorithm gave spurious or unrepresenta-
tive results we have left it off rather the given benchmark.

The ann-benchmark suite is designed to look at the trade-off in performance between search accuracy and search speed
(or other performance statistic, such as index creation time, or index size). Since this is a trade-off that can often be
tuned by appropriately adjusting parameters ann-benchmarks handles this by running a predefined (for each algorithm
or implementation) range of parameters. It then finds the pareto frontier for the optimal speed / accuracy trade-off and
presents this as a curve. The various implementations can then be compared in terms of the pareto frontier curves. The
default choices of measure for ann-benchmarks puts recall (effective search accuracy) along the x-axis and queries-
per-second (search speed) on the y-axis. Thus curves that are further up and / or more to the right are providing better
speed and / or more accuracy.

To get a good overview of the relative performance characteristics of the different implementations we’ll look at the
speed / accuracy trade-off curves for a variety of datasets. This is because the dataset size, dimensionality, distribution
and metric can all have non-trivial impacts on performance in various ways, and results for one dataset are not neces-
sarily representative of how things will look for a different dataset. We will introduce each dataset in turn, and then
look at the performance curves. To start with we’ll consider datasets which use Euclidean distance.

2.6.1 Euclidean distance

Euclidean distance is the usual notion of distance that we are familiar with in everyday life, just extended to arbitrary
dimensions (instead of only two or three). It is defined as 𝑑(�̄�, 𝑦) =

∑︀
𝑖(𝑥𝑖 − 𝑦𝑖)

2 for vectors �̄� = (𝑥1, 𝑥2, . . . , 𝑥𝐷)
and 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝐷). It is widely used as a distance measure, but can have difficulties with high dimensional data
in some cases.

The first dataset we will consider that uses Euclidean distance is the MNIST dataset. MNIST consists of grayscale
images of handwritten digits (from 0 to 9). Each digit image is 28 by 28 pixels, which is usually unravelled into a
single vectors of 784 dimensions. In total there are 70,000 images in the dataset, and ann-benchmarks uses the usual
split into 60,000 training samples and 10,000 test samples. The ANN index is built on the training set, and then the
test set is used as the query data for benchmarking.

50 Chapter 2. Installing

https://en.wikipedia.org/wiki/Pareto_efficiency#Use_in_engineering

pynndescent, Release 0.5.0

Remember that up and to the right is better. Also note that the y axis (queries per second) is plotted in log scale so each
major grid step represents an order of magnitude performance difference. We can see that PyNNDescent performs very
well here, outpacing the other ANN libraries in the high accuracy range. It is worth noting, however, that for lower
accuracy queries it finishes essentially on par with ONNG, and unlike ONNG and nmslib’s HNSW implementation,
it does not extend to very high performance but low accuracy queries. If speed is absolutely paramount, and you only
need to be in the vaguely right ballpark for accuracy then PyNNDescent may not be the right choice here.

Next up for dataset is Fashion-MNIST. This was a dataset designed to be a drop in replacement for MNIST, but meant
to be more challenging for machine learning tasks. Instead of grayscale images of digits it is grayscale images of
fashion items (dresses, shirts, pants, boots, sandas, handbags, etc.). Just like MNIST each image is 28 by 28 pixels
resulting in 784-dimensional vectors. Also just like MNIST there are 70,000 total images, split into 60,000 training
images and 10,000 test images.

2.6. PyNNDescent Performance 51

pynndescent, Release 0.5.0

Again we see a very similar result (although this should not entirely be a surprise given the similarity of the dataset in
terms of the number of samples and dimensionality). PyNNDescent performs very well in the high accuracy regime,
but does not scale to the very high performance but low accuracy ranges that ONNG and nmslib’s HNSW manage. It
is also worth noting the clear difference between the various graph based search algorithms and the tree based Annoy –
while Annoy is a very impressive ANN search implementation it compares poorly to the graph based search techniques
on these datasets.

Next up is the SIFT dataset. SIFT stands for Scale-Invariant Feature Transform and is a technique from compute vision
for generating feature vectors from images. For ann-benchmarks this means that there exist some large databases of
SIFT features from image datasets which can be used to test nearest neighbor search. In particular the SIFT dataset in
ann-benchmarks is a dataset of one million SIFT vectors where each vector is 128-dimensional. This provides a good
contrast to the earlier datasets which had relatively high dimensionality, but not an especially large number of samples.
For ann-benchmarks the dataset is split into 990,000 training samples, and 10,000 test samples for querying with.

52 Chapter 2. Installing

https://en.wikipedia.org/wiki/Scale-invariant_feature_transform

pynndescent, Release 0.5.0

Again we see that PyNNDescent performs very well. This time, however, with the more challenging search problem
presented by a training set this large, it does produce some lower accuracy searches and in those cases both ONG and
nmslib’s HNSW outperform it. It’s also worth noting that in this lower dimensional dataset Annoy performs better,
comparatively, than the previous datasets. Still, over the Euclidean distance datasets tested here PyNNDescent remains
a clear winner for high accuracy queries. Let’s move on to the angular distance based datasets.

2.6.2 Angular distance

Angular based distances measure the similarity of two vectors in terms of the angle they span – the greater the angle the
larger the distance between the vectors. Thus two vectors of different length can be viewed as being very close as long
as they are pointing in the same direction. Another way of looking at this is to imagine that the data is being projected
onto a high dimensional sphere (by intersecting a ray in the vectors direction with a unit sphere), and distances are
measured in terms of arcs around the sphere.

In practice the most commonly used angular distance is cosine distance, defined as

𝑑(�̄�, 𝑦) = 1 −
∑︁
𝑖

𝑥𝑖𝑦𝑖
‖�̄�‖2‖𝑦‖2

where ‖�̄�‖2 denotes the ℓ2 norm of �̄�. To see why this is a measure of angular distance note that
∑︀

𝑖 𝑥𝑖𝑦𝑖 is the
euclidean dot product of �̄� and 𝑦 and that the euclidean dot product formula gives �̄� · 𝑦 = ‖𝑥‖2‖𝑦‖2 cos 𝜃 where 𝜃 is
the angle between the vectors.

In the case where the vectors all have unit norm the cosine distance reduces to just one minus the dot product of the
vectors – which is sometimes used as an angular distance measure. Indeed, that is the case for our first dataset, the
LastFM dataset. This dataset is constructed of 64 factors in a recommendation system for the Last FM online music

2.6. PyNNDescent Performance 53

https://en.wikipedia.org/wiki/Norm_%20(mathematics)#Euclidean_norm

pynndescent, Release 0.5.0

service. It contains 292,385 training samples and 50,000 test samples. Compared to the other datasets explored so far
this is considerably lower dimensional and the distance computation is simpler. Let’s see what results we get.

Here we see hnswlib and HNSW from nmslib performing extremely well – outpacing ONNG unlike we saw in the
previous euclidean datasets. The HNSW implementation is FAISS is further behind. While PyNNDescent is not the
fastest option on this dataset it is highly competitive with the two top performing HNSW implementations.

The next dataset is a GloVe dataset of word vectors. The GloVe datasets are generated from a word-word co-occurrence
count matrix generated from vast collections of text. Each word that occurs (frequently enough) in the text will get
a resulting vector, with the principle that words with similar meanings will be assigned vectors that are similar (in
angular distance). The dimensionality of the generated vectors is an input to the GloVe algorithm. For the first of
the the GloVe datasets we will be looking at the 25 dimensional vectors. Since GloVe vectors were trained useing a
vast corpus there are over one million different words represented, and thus we have 1,183,514 training samples and
10,000 test samples to work with. This gives is a low dimensional but extremely large dataset to work with.

54 Chapter 2. Installing

pynndescent, Release 0.5.0

In this case PyNNDescent and hnswlib are the apparent winners – although PyNNDescent, similar to the earlier
examples, performs less well once we get below abot 80% accuracy.

Next we’ll move up to a higher dimensional version of GloVe vectors. These vectors were trained on the same
underlying text dataset, so we have the same number of samples (both for train and test), but now we have 100
dimensional vectors. This makes the problem more challenging as the underlying distance computation is a little more
expensive given the higher dimensionality.

2.6. PyNNDescent Performance 55

pynndescent, Release 0.5.0

This time it is ONNG that surges to the front of the pack. Relatively speaking PyNNDescent is not too far behind.
This goes to show, however, how much performance can vary based on the exact nature of the dataset: while ONNG
was a (relatively) poor performer on the 25-dimensional version of this data with hnswlib out in front, the roles are
reversed for this 100-dimensional data.

The last dataset is the NY-Times dataset. This is data generated as dimension reduced (via PCA) TF-IDF vectors
of New York Times articles. The resulting dataset has 290,000 training samples and 10,000 test samples in 256
dimensions. This is quite a challenging dataset, and all the algorithms have significantly lower query-per-second
performance on this data.

56 Chapter 2. Installing

https://en.wikipedia.org/wiki/Tf%E2%80%93idf

pynndescent, Release 0.5.0

Here we see that PyNNDescent and ONNG are the best performing implementations, particularly at the higher accu-
racy range (ONNG has a slight edge on PyNNDescent here).

This concludes our examination of performance for now. Having examined performance for many different datasets
it is clear that the various algorithms and implementations vary in performance depending on the exact nature of the
data. None the less, we hope that this has demonstrated that PyNNDescent has excellent performance characteristics
across a wide variety of datasets, often performing better than many state-of-the-art implementations.

2.7 PyNNDescent API Guide

PyNNDescent has only two classes NNDescent and PyNNDescentTransformer.

2.7. PyNNDescent API Guide 57

pynndescent, Release 0.5.0

2.7.1 PyNNDescent

class pynndescent.pynndescent_.NNDescent(data, metric=’euclidean’, metric_kwds=None,
n_neighbors=30, n_trees=None, leaf_size=None,
pruning_degree_multiplier=1.5, diver-
sify_prob=1.0, n_search_trees=1, tree_init=True,
init_graph=None, init_dist=None, ran-
dom_state=None, low_memory=True,
max_candidates=None, n_iters=None,
delta=0.001, n_jobs=None, compressed=False,
parallel_batch_queries=False, verbose=False)

NNDescent for fast approximate nearest neighbor queries. NNDescent is very flexible and supports a wide
variety of distances, including non-metric distances. NNDescent also scales well against high dimensional
graph_data in many cases. This implementation provides a straightfoward interface, with access to some tuning
parameters.

data: array of shape (n_samples, n_features) The training graph_data set to find nearest neighbors in.

metric: string or callable (optional, default=’euclidean’) The metric to use for computing nearest neighbors.
If a callable is used it must be a numba njit compiled function. Supported metrics include:

• euclidean

• manhattan

• chebyshev

• minkowski

• canberra

• braycurtis

• mahalanobis

• wminkowski

• seuclidean

• cosine

• correlation

• haversine

• hamming

• jaccard

• dice

• russelrao

• kulsinski

• rogerstanimoto

• sokalmichener

• sokalsneath

• yule

• hellinger

• wasserstein-1d

58 Chapter 2. Installing

pynndescent, Release 0.5.0

Metrics that take arguments (such as minkowski, mahalanobis etc.) can have arguments passed via the
metric_kwds dictionary. At this time care must be taken and dictionary elements must be ordered appro-
priately; this will hopefully be fixed in the future.

metric_kwds: dict (optional, default {}) Arguments to pass on to the metric, such as the p value for
Minkowski distance.

n_neighbors: int (optional, default=30) The number of neighbors to use in k-neighbor graph graph_data
structure used for fast approximate nearest neighbor search. Larger values will result in more accurate
search results at the cost of computation time.

n_trees: int (optional, default=None) This implementation uses random projection forests for initializing the
index build process. This parameter controls the number of trees in that forest. A larger number will result
in more accurate neighbor computation at the cost of performance. The default of None means a value will
be chosen based on the size of the graph_data.

leaf_size: int (optional, default=None) The maximum number of points in a leaf for the random projection
trees. The default of None means a value will be chosen based on n_neighbors.

pruning_degree_multiplier: float (optional, default=1.5) How aggressively to prune the graph. Since the
search graph is undirected (and thus includes nearest neighbors and reverse nearest neighbors) vertices
can have very high degree – the graph will be pruned such that no vertex has degree greater than
pruning_degree_multiplier * n_neighbors.

diversify_prob: float (optional, default=1.0) The search graph get “diversified” by removing potentially un-
necessary edges. This controls the volume of edges removed. A value of 0.0 ensures that no edges get
removed, and larger values result in significantly more aggressive edge removal. A value of 1.0 will prune
all edges that it can.

n_search_trees: int (optional, default=1) The number of random projection trees to use in initializing search-
ing or querying.

Deprecated since version 0.5.5.

tree_init: bool (optional, default=True) Whether to use random projection trees for initialization.

init_graph: np.ndarray (optional, default=None) 2D array of indices of candidate neighbours of the shape
(data.shape[0], n_neighbours). If the j-th neighbour of the i-th instances is unknown, use init_graph[i, j] =
-1

init_dist: np.ndarray (optional, default=None) 2D array with the same shape as init_graph, such that met-
ric(data[i], data[init_graph[i, j]]) equals init_dist[i, j]

random_state: int, RandomState instance or None, optional (default: None) If int, random_state is the
seed used by the random number generator; If RandomState instance, random_state is the random number
generator; If None, the random number generator is the RandomState instance used by np.random.

algorithm: string (optional, default=’standard’) This implementation provides an alternative algorithm for
construction of the k-neighbors graph used as a search index. The alternative algorithm can be fast for large
n_neighbors values. The‘‘’alternative’‘‘ algorithm has been deprecated and is no longer available.

low_memory: boolean (optional, default=True) Whether to use a lower memory, but more computationally
expensive approach to index construction.

max_candidates: int (optional, default=None) Internally each “self-join” keeps a maximum number of can-
didates (nearest neighbors and reverse nearest neighbors) to be considered. This value controls this aspect
of the algorithm. Larger values will provide more accurate search results later, but potentially at non-
negligible computation cost in building the index. Don’t tweak this value unless you know what you’re
doing.

n_iters: int (optional, default=None) The maximum number of NN-descent iterations to perform. The NN-
descent algorithm can abort early if limited progress is being made, so this only controls the worst case.

2.7. PyNNDescent API Guide 59

pynndescent, Release 0.5.0

Don’t tweak this value unless you know what you’re doing. The default of None means a value will be
chosen based on the size of the graph_data.

delta: float (optional, default=0.001) Controls the early abort due to limited progress. Larger values will result
in earlier aborts, providing less accurate indexes, and less accurate searching. Don’t tweak this value unless
you know what you’re doing.

n_jobs: int or None, optional (default=None) The number of parallel jobs to run for neighbors index con-
struction. None means 1 unless in a joblib.parallel_backend context. -1 means using all
processors.

compressed: bool (optional, default=False) Whether to prune out data not needed for searching the index.
This will result in a significantly smaller index, particularly useful for saving, but will remove information
that might otherwise be useful.

parallel_batch_queries: bool (optional, default=False) Whether to use parallelism of batched queries. This
can be useful for large batches of queries on multicore machines, but results in performance degradation
for single queries, so is poor for streaming use.

verbose: bool (optional, default=False) Whether to print status graph_data during the computation.

query(query_data, k=10, epsilon=0.1)
Query the training graph_data for the k nearest neighbors

query_data: array-like, last dimension self.dim An array of points to query

k: integer (default = 10) The number of nearest neighbors to return

epsilon: float (optional, default=0.1) When searching for nearest neighbors of a query point this values
controls the trade-off between accuracy and search cost. Larger values produce more accurate nearest
neighbor results at larger computational cost for the search. Values should be in the range 0.0 to 0.5,
but should probably not exceed 0.3 without good reason.

indices, distances: array (n_query_points, k), array (n_query_points, k) The first array, indices,
provides the indices of the graph_data points in the training set that are the nearest neighbors of
each query point. Thus indices[i, j] is the index into the training graph_data of the jth nearest
neighbor of the ith query points.

Similarly distances provides the distances to the neighbors of the query points such that
distances[i, j] is the distance from the ith query point to its jth nearest neighbor in the training
graph_data.

update(xs_fresh=None, xs_updated=None, updated_indices=None)
Updates the index with a) fresh data (that is appended to the existing data), and b) data that was only
updated (but should not be appended to the existing data).

Not applicable to sparse data yet.

xs_fresh: np.ndarray (optional, default=None) 2D array of the shape (n_fresh, dim) where dim is the
dimension of the data from which we built self.

xs_updated: np.ndarray (optional, default=None) 2D array of the shape (n_updates, dim) where dim
is the dimension of the data from which we built self.

updated_indices: array-like of size n_updates (optional, default=None) Something that is convertable
to list of ints. If self is currently built from xs, then xs[update_indices[i]] will be replaced by
xs_updated[i].

None

60 Chapter 2. Installing

pynndescent, Release 0.5.0

class pynndescent.pynndescent_.PyNNDescentTransformer(n_neighbors=30,
metric=’euclidean’,
metric_kwds=None,
n_trees=None,
leaf_size=None,
search_epsilon=0.1, prun-
ing_degree_multiplier=1.5,
diversify_prob=1.0,
n_search_trees=1,
tree_init=True, ran-
dom_state=None,
n_jobs=None,
low_memory=True,
max_candidates=None,
n_iters=None,
early_termination_value=0.001,
paral-
lel_batch_queries=False,
verbose=False)

PyNNDescentTransformer for fast approximate nearest neighbor transformer. It uses the NNDescent algorithm,
and is thus very flexible and supports a wide variety of distances, including non-metric distances. NNDescent
also scales well against high dimensional graph_data in many cases.

Transform X into a (weighted) graph of k nearest neighbors

The transformed graph_data is a sparse graph as returned by kneighbors_graph.

n_neighbors: int (optional, default=5) The number of neighbors to use in k-neighbor graph graph_data struc-
ture used for fast approximate nearest neighbor search. Larger values will result in more accurate search
results at the cost of computation time.

metric: string or callable (optional, default=’euclidean’) The metric to use for computing nearest neighbors.
If a callable is used it must be a numba njit compiled function. Supported metrics include:

• euclidean

• manhattan

• chebyshev

• minkowski

• canberra

• braycurtis

• mahalanobis

• wminkowski

• seuclidean

• cosine

• correlation

• haversine

• hamming

• jaccard

• dice

2.7. PyNNDescent API Guide 61

pynndescent, Release 0.5.0

• russelrao

• kulsinski

• rogerstanimoto

• sokalmichener

• sokalsneath

• yule

• hellinger

• wasserstein-1d

Metrics that take arguments (such as minkowski, mahalanobis etc.) can have arguments passed via the
metric_kwds dictionary. At this time care must be taken and dictionary elements must be ordered appro-
priately; this will hopefully be fixed in the future.

metric_kwds: dict (optional, default {}) Arguments to pass on to the metric, such as the p value for
Minkowski distance.

n_trees: int (optional, default=None) This implementation uses random projection forests for initialization of
searches. This parameter controls the number of trees in that forest. A larger number will result in more
accurate neighbor computation at the cost of performance. The default of None means a value will be
chosen based on the size of the graph_data.

leaf_size: int (optional, default=None) The maximum number of points in a leaf for the random projection
trees. The default of None means a value will be chosen based on n_neighbors.

pruning_degree_multiplier: float (optional, default=1.5) How aggressively to prune the graph. Since the
search graph is undirected (and thus includes nearest neighbors and reverse nearest neighbors) vertices
can have very high degree – the graph will be pruned such that no vertex has degree greater than
pruning_degree_multiplier * n_neighbors.

diversify_prob: float (optional, default=1.0) The search graph get “diversified” by removing potentially un-
necessary edges. This controls the volume of edges removed. A value of 0.0 ensures that no edges get
removed, and larger values result in significantly more aggressive edge removal. A value of 1.0 will prune
all edges that it can.

n_search_trees: int (optional, default=1) The number of random projection trees to use in initializing search-
ing or querying.

Deprecated since version 0.5.5.

search_epsilon: float (optional, default=0.1) When searching for nearest neighbors of a query point this val-
ues controls the trade-off between accuracy and search cost. Larger values produce more accurate nearest
neighbor results at larger computational cost for the search. Values should be in the range 0.0 to 0.5, but
should probably not exceed 0.3 without good reason.

tree_init: bool (optional, default=True) Whether to use random projection trees for initialization.

random_state: int, RandomState instance or None, optional (default: None) If int, random_state is the
seed used by the random number generator; If RandomState instance, random_state is the random number
generator; If None, the random number generator is the RandomState instance used by np.random.

n_jobs: int or None (optional, default=None) The maximum number of parallel threads to be run at a time.
If none this will default to using all the cores available. Note that there is not perfect parallelism, so at
several pints the algorithm will be single threaded.

low_memory: boolean (optional, default=False) Whether to use a lower memory, but more computationally
expensive approach to index construction. This defaults to false as for most cases it speeds index con-

62 Chapter 2. Installing

pynndescent, Release 0.5.0

struction, but if you are having issues with excessive memory use for your dataset consider setting this to
True.

max_candidates: int (optional, default=20) Internally each “self-join” keeps a maximum number of candi-
dates (nearest neighbors and reverse nearest neighbors) to be considered. This value controls this aspect
of the algorithm. Larger values will provide more accurate search results later, but potentially at non-
negligible computation cost in building the index. Don’t tweak this value unless you know what you’re
doing.

n_iters: int (optional, default=None) The maximum number of NN-descent iterations to perform. The NN-
descent algorithm can abort early if limited progress is being made, so this only controls the worst case.
Don’t tweak this value unless you know what you’re doing. The default of None means a value will be
chosen based on the size of the graph_data.

early_termination_value: float (optional, default=0.001) Controls the early abort due to limited progress.
Larger values will result in earlier aborts, providing less accurate indexes, and less accurate searching.
Don’t tweak this value unless you know what you’re doing.

parallel_batch_queries: bool (optional, default=False) Whether to use parallelism of batched queries. This
can be useful for large batches of queries on multicore machines, but results in performance degradation
for single queries, so is poor for streaming use.

verbose: bool (optional, default=False) Whether to print status graph_data during the computation.

>>> from sklearn.manifold import Isomap
>>> from pynndescent import PyNNDescentTransformer
>>> from sklearn.pipeline import make_pipeline
>>> estimator = make_pipeline(
... PyNNDescentTransformer(n_neighbors=5),
... Isomap(neighbors_algorithm='precomputed'))

fit(X, compress_index=True)
Fit the PyNNDescent transformer to build KNN graphs with neighbors given by the dataset X.

X [array-like, shape (n_samples, n_features)] Sample graph_data

transformer [PyNNDescentTransformer] The trained transformer

fit_transform(X, y=None, **fit_params)
Fit to graph_data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

X [numpy array of shape (n_samples, n_features)] Training set.

y : ignored

Xt [CSR sparse matrix, shape (n_samples, n_samples)] Xt[i, j] is assigned the weight of edge that connects
i to j. Only the neighbors have an explicit value. The diagonal is always explicit.

transform(X, y=None)
Computes the (weighted) graph of Neighbors for points in X

X [array-like, shape (n_samples_transform, n_features)] Sample graph_data

Xt [CSR sparse matrix, shape (n_samples_transform, n_samples_fit)] Xt[i, j] is assigned the weight of
edge that connects i to j. Only the neighbors have an explicit value.

A number of internal functions can also be accessed separately for more fine tuned work.

2.7. PyNNDescent API Guide 63

pynndescent, Release 0.5.0

2.7.2 Distance Functions

pynndescent.distances.chebyshev
Chebyshev or l-infinity distance.

𝐷(𝑥, 𝑦) = max
𝑖

|𝑥𝑖 − 𝑦𝑖|

pynndescent.distances.euclidean
Standard euclidean distance.

𝐷(𝑥, 𝑦) =

𝑠𝑞𝑟𝑡
∑︁
𝑖

(𝑥𝑖 − 𝑦𝑖)
2

pynndescent.distances.manhattan
Manhattan, taxicab, or l1 distance.

𝐷(𝑥, 𝑦) =
∑︁
𝑖

|𝑥𝑖 − 𝑦𝑖|

pynndescent.distances.minkowski
Minkowski distance.

𝐷(𝑥, 𝑦) =

(︃∑︁
𝑖

|𝑥𝑖 − 𝑦𝑖|𝑝
)︃ 1

𝑝

This is a general distance. For p=1 it is equivalent to manhattan distance, for p=2 it is Euclidean distance, and
for p=infinity it is Chebyshev distance. In general it is better to use the more specialised functions for those
distances.

pynndescent.distances.squared_euclidean
Squared euclidean distance.

𝐷(𝑥, 𝑦) =
∑︁
𝑖

(𝑥𝑖 − 𝑦𝑖)
2

pynndescent.distances.standardised_euclidean
Euclidean distance standardised against a vector of standard deviations per coordinate.

𝐷(𝑥, 𝑦) =

√︃∑︁
𝑖

(𝑥𝑖 − 𝑦𝑖) * *2

𝑣𝑖

pynndescent.distances.weighted_minkowski
A weighted version of Minkowski distance.

𝐷(𝑥, 𝑦) =

(︃∑︁
𝑖

𝑤𝑖|𝑥𝑖 − 𝑦𝑖|𝑝
)︃ 1

𝑝

If weights w_i are inverse standard deviations of graph_data in each dimension then this represented a standard-
ised Minkowski distance (and is equivalent to standardised Euclidean distance for p=1).

64 Chapter 2. Installing

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

65

pynndescent, Release 0.5.0

66 Chapter 3. Indices and tables

Python Module Index

p
pynndescent.distances, 64

67

pynndescent, Release 0.5.0

68 Python Module Index

Index

C
chebyshev (in module pynndescent.distances), 64

E
euclidean (in module pynndescent.distances), 64

F
fit() (pynndescent.pynndescent_.PyNNDescentTransformer

method), 63
fit_transform() (pynndes-

cent.pynndescent_.PyNNDescentTransformer
method), 63

M
manhattan (in module pynndescent.distances), 64
minkowski (in module pynndescent.distances), 64

N
NNDescent (class in pynndescent.pynndescent_), 58

P
pynndescent.distances (module), 64
PyNNDescentTransformer (class in pynndes-

cent.pynndescent_), 60

Q
query() (pynndescent.pynndescent_.NNDescent

method), 60

S
squared_euclidean (in module pynndes-

cent.distances), 64
standardised_euclidean (in module pynndes-

cent.distances), 64

T
transform() (pynndes-

cent.pynndescent_.PyNNDescentTransformer
method), 63

U
update() (pynndescent.pynndescent_.NNDescent

method), 60

W
weighted_minkowski (in module pynndes-

cent.distances), 64

69

	Why use PyNNDescent?
	Installing
	How to use PyNNDescent
	PyNNDescent with different metrics
	Working with sparse data
	Working with Scikit-learn pipelines
	How PyNNDescent works
	PyNNDescent Performance
	PyNNDescent API Guide

	Indices and tables
	Python Module Index
	Index

