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PyNNDescent for fast Approximate Nearest Neighbors

PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors.
It provides a python implementation of Nearest Neighbor
Descent for k-neighbor-graph construction and approximate nearest neighbor
search, as per the paper:

Dong, Wei, Charikar Moses, and Kai Li.
“Efficient k-nearest neighbor graph construction for generic similarity
measures.”
Proceedings of the 20th international conference on World wide web. ACM, 2011.

This library supplements that approach with the use of random projection trees for
initialisation. This can be particularly useful for the metrics that are
amenable to such approaches (euclidean, minkowski, angular, cosine, etc.). Graph
diversification is also performed, pruning the longest edges of any triangles in the
graph.

Currently this library targets relatively high accuracy
(80%-100% accuracy rate) approximate nearest neighbor searches.


Why use PyNNDescent?

PyNNDescent provides fast approximate nearest neighbor queries. The
ann-benchmarks [https://github.com/erikbern/ann-benchmarks] system puts it
solidly in the mix of top performing ANN libraries:

SIFT-128 Euclidean
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NYTimes-256 Angular
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While PyNNDescent is among fastest ANN library, it is also both easy to install (pip
and conda installable) with no platform or compilation issues, and is very flexible,
supporting a wide variety of distance metrics by default:

Minkowski style metrics


	euclidean


	manhattan


	chebyshev


	minkowski




Miscellaneous spatial metrics


	canberra


	braycurtis


	haversine




Normalized spatial metrics


	mahalanobis


	wminkowski


	seuclidean




Angular and correlation metrics


	cosine


	dot


	correlation


	spearmanr


	tsss


	true_angular




Probability metrics


	hellinger


	wasserstein




Metrics for binary data


	hamming


	jaccard


	dice


	russelrao


	kulsinski


	rogerstanimoto


	sokalmichener


	sokalsneath


	yule




and also custom user defined distance metrics while still retaining performance.

PyNNDescent also integrates well with Scikit-learn, including providing support
for the KNeighborTransformer as a drop in replacement for algorithms
that make use of nearest neighbor computations.



Installing

PyNNDescent is designed to be easy to install being a pure python module with
relatively light requirements:


	numpy


	scipy


	scikit-learn >= 0.22


	numba >= 0.51




all of which should be pip or conda installable. The easiest way to install should be
via conda:

conda install -c conda-forge pynndescent





or via pip:

pip install pynndescent
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How to use PyNNDescent

PyNNDescent is a library that provides fast approximate nearest neighbor search. It is designed to be as flexible as possible for python users. That includes a wealth of pre-defined distance measures, the ability to use custom user-defined distance measures, as well as handling of sparse matrix inputs and more. Let’s walk through how you can use PyNNDescent for approximate nearest neighbor search. First let’s load the library, and some tools to get some suitable data.


[1]:





import pynndescent
import numpy as np
import h5py
from urllib.request import urlretrieve
import os







The ann-benchmarks [http://ann-benchmarks.com] website, maintained by Erik Bernhardsson, Martin Aumueller and Alex Faitfull, provides a comprehensive suite of benchmarking for approximate nearest neighbor libraries and algorithms. For our purposes the important fact is that this includes keeping a variety of datasets, of varying levels of size and difficulty, for trying out nearest neighbor search on. To make things easy we’ll write a short function that can fetch the (pre-prepared) dataset
from ann-benchmarks and load it into train and test numpy arrays.


[2]:





def get_ann_benchmark_data(dataset_name):
    if not os.path.exists(f"{dataset_name}.hdf5"):
        print(f"Dataset {dataset_name} is not cached; downloading now ...")
        urlretrieve(f"http://ann-benchmarks.com/{dataset_name}.hdf5", f"{dataset_name}.hdf5")
    hdf5_file = h5py.File(f"{dataset_name}.hdf5", "r")
    return np.array(hdf5_file['train']), np.array(hdf5_file['test']), hdf5_file.attrs['distance']







To start let’s grab the fashion-mnist [https://github.com/azlandoresearch/fashion-mnist] dataset for some initial experiments.


[3]:





fmnist_train, fmnist_test, _ = get_ann_benchmark_data('fashion-mnist-784-euclidean')







With the dataset now loaded let’s build a search index for the training set. This is done using the NNDescent class, which we simply hand the training data to (we’ll look at other parameter options later). It will take a little time to build the index, so let’s keep track using the %time magic in jupyter.


[4]:





%%time
index = pynndescent.NNDescent(fmnist_train)













CPU times: user 48.5 s, sys: 1.07 s, total: 49.5 s
Wall time: 27.7 s






Over ten seconds! That seems slow. How much data did we index, and how high dimensional is it?


[5]:





fmnist_train.shape








[5]:







(60000, 784)






Okay, so sixty-thousand samples living in a seven-hundred and eighty-four dimensional space – that is a reasonable amount of data. We already had the data however, so why did we spend all that time building an index on top of it? It allows us to query that data to find the points closest to new, previously unseen data points. This is a surprisingly common problem – “find the other things that look like this” – that crops up in everything from recommendation systems (e.g. what are some other
songs or artists that are like this song?), to classification and regression (using a KNN-classifier [https://scikit-learn.org/stable/modules/neighbors.html#classification] and friends), to clustering (and density based clustering algorithm makes heavy use of near neighbor searches to determine density).

So, given that we have built an index on the training data, we can use that index to find the nearest neighbors from the training set to each sample in the test set. Let’s do that now for the first 10 samples of the test set, again, keeping track of the time:


[6]:





%%time
neighbors = index.query(fmnist_test[:10])













CPU times: user 23.4 s, sys: 377 ms, total: 23.8 s
Wall time: 18.3 s






That was also slow! What happened? The first time the index is queried it does some book-keeping (that may not be required for some other tasks as we’ll see below). There is also time for numba to JIT compile many routines in the background (you might find, for instance, that the very first run of index building might take longer than you expect, but subsequence runs are much faster). You can force this ahead of time by calling the prepare method. Let’s rebuild the index from scratch
including the prepare step to see how long that takes.


[7]:





%%time
index = pynndescent.NNDescent(fmnist_train)
index.prepare()













CPU times: user 47.3 s, sys: 743 ms, total: 48.1 s
Wall time: 20 s






That took longer, but how long do the queries take now? Let’s query the entire test set.


[8]:





%%time
neighbors = index.query(fmnist_test)













CPU times: user 742 ms, sys: 17.6 ms, total: 759 ms
Wall time: 758 ms






That’s more like the sort of performance we might have been hoping for. And just to demonstrate that the prepare step is getting called on the first query, we’ll start from scratch again.


[9]:





%%time
index = pynndescent.NNDescent(fmnist_train)
neighbors = index.query(fmnist_test[:10])













CPU times: user 47.1 s, sys: 673 ms, total: 47.8 s
Wall time: 19.4 s







[10]:





%%time
neighbors = index.query(fmnist_test)













CPU times: user 785 ms, sys: 21.3 ms, total: 806 ms
Wall time: 821 ms






Again, we get the sort of performance we might hope for by constructing a fast index over the data (and the numba JIT compiler is stating to warm up a little). There is a catch however – at the start we said approximate nearest neighbor search. We might have gotten some neighbors data returned, but how good is it? Being fast doesn’t matter if you return random results. To check we’ll have to find the true nearest neighbors of the test set. Given that we have to search through sixty-thousand
points for each of the ten-thousand test samples a pure brute force approach is going to be too expensive. Instead we can use kd-trees [https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html] from scikit-learn.


[11]:





from sklearn.neighbors import KDTree







The KDTree is scikit-learn has a very similar interface. You hand the tree constructor the training data, and then you can query it. In this case there is no prepare step required – all the work is done at construction time since there aren’t intermediate results that might be useful. We can time how long the KDTree takes to do its exact nearest neighbor computation to get a gauge on what PyNNDescent is buying us before we get to the issue of comparing the results of the exact and
approximate algorithms.


[12]:





%%time
tree_index = KDTree(fmnist_train)













CPU times: user 15.2 s, sys: 177 ms, total: 15.3 s
Wall time: 15.6 s






A faster build time for the tree itself. The question is how well the tree index works when querying new points…


[13]:





%%time
tree_neighbors = tree_index.query(fmnist_test, k=10)













CPU times: user 10min 19s, sys: 3.24 s, total: 10min 22s
Wall time: 11min 12s






Ouch! We can see now what PyNNDescent is buying us in terms of querying speed (though, to be fair, this is high dimensional data that is a worst case scenario for kd-trees). We did have to give up some accuracy to get that speed-up however. The real question is how much accuracy did we lose? How approximate are our nearest neighbors?

We can write a short function to take some approximate neighbors and the true neighbors and output the proportion of neighbors that the apprxomation got correct for each and every query point (i.e. each point of the test set).


[14]:





def accuracy_per_query_point(approx_neighbors, true_neighbors):
    approx_indices = approx_neighbors[0]
    true_indices = true_neighbors[1]
    result = np.zeros(approx_indices.shape[0])
    for i in range(approx_indices.shape[0]):
        n_correct = np.intersect1d(approx_indices[i], true_indices[i]).shape[0]
        result[i] = n_correct / true_indices.shape[1]
    return result








[15]:





accuracy_stats = accuracy_per_query_point(neighbors, tree_neighbors)








[16]:





import seaborn as sns
import matplotlib.pyplot as plt

sns.set(rc={"figure.figsize":(10,6)})








[17]:





sns.distplot(accuracy_stats, kde=False)
plt.title("Distribution of accuracy per query point")
plt.xlabel("Accuracy")
print(f"Average accuracy of {np.mean(accuracy_stats)}")













Average accuracy of 0.9781
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So we are getting 100% accuracy for the vast majority of query points, but there are a thousand or so that get one neighbor wrong, and a very few that get two or three wrong. Even then we are likely getting the eleventh and twelfth nearest neighbors in those cases. So in general we have a very high accuracy given how much faster the query is.


Query parameters

What if we want to be more accurate? There are a few ways to go about this. The most obvious is to simply ask for more neighbors, and then the top 10 will be more accurate. We can do this by specifying k in the query (just as we did for the KDTree – it is just that PyNNDescent defaults to 10 neighbors).


[18]:





%%time
more_neighbors = index.query(fmnist_test, k=15)













CPU times: user 1.1 s, sys: 486 ms, total: 1.59 s
Wall time: 1.99 s







[19]:





more_accuracy_stats = accuracy_per_query_point(more_neighbors, tree_neighbors)
sns.distplot(more_accuracy_stats, kde=False)
plt.title("Distribution of accuracy per query point")
plt.xlabel("Accuracy")
print(f"Average accuracy of {np.mean(more_accuracy_stats)}")













Average accuracy of 0.99021
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An alternative approach is to tolerate a little more backtracking in the approximate search. This is controlled by the parameter epsilon. The larger the value the more backtracking the algorithm will tolerate, and the more accurate it will be (at the cost of greater search time). The default value is 0.1 and for euclidean distance going to 0.2 or even 0.3 might make sense. You can, of course, also turn it down to 0.0 and do no backtracking for even faster search (but
reduced accuracy). Let’s try both options; greater accuracy first.


[20]:





%%time
better_neighbors = index.query(fmnist_test, epsilon=0.2)













CPU times: user 1.35 s, sys: 18.2 ms, total: 1.37 s
Wall time: 1.39 s







[21]:





better_accuracy_stats = accuracy_per_query_point(better_neighbors, tree_neighbors)
sns.distplot(better_accuracy_stats, kde=False)
plt.title("Distribution of accuracy per query point")
plt.xlabel("Accuracy")
print(f"Average accuracy of {np.mean(better_accuracy_stats)}")













Average accuracy of 0.9965
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With epsilon=0.2 we see a great improvement in accuracy. Everything but a very small number of query points get all 10 neighbors correct! We took a little more time, but still vastly less than the kd-tree. We also were significantly more accurate than simply taking more neighbors for very little extra cost in search time. What if we go the other way and turn epsilon down to zero?


[22]:





%%time
worse_neighbors = index.query(fmnist_test, epsilon=0.0)













CPU times: user 456 ms, sys: 6.8 ms, total: 462 ms
Wall time: 471 ms







[23]:





worse_accuracy_stats = accuracy_per_query_point(worse_neighbors, tree_neighbors)
sns.distplot(worse_accuracy_stats, kde=False)
plt.title("Distribution of accuracy per query point")
plt.xlabel("Accuracy")
print(f"Average accuracy of {np.mean(worse_accuracy_stats)}")













Average accuracy of 0.88776
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The accuracy has dropped quite a bit now, but if we only need to be “close” then this might be good enough, and it is definitely faster. This provides an easy trade-off between accuracy and query time.



Index parameters

It is often the case that we know what we really need is fast queries – as fast as possible – and we are willing to sacrifice accuracy to get there. We know we are going to do a lot of queries, so it would be better if we could set up the index itself to target faster querying rather than just hoping the epsilon parameter will get things fast enough.

Alternatively we might really want very accurate queries – ideally exact queries, but they are too expensive – and be prepared to put in more work on the index to make queries more accurate but still fast.

These options can be dealt with via various parameters that are passed to the index constructor. There are many parameters that can be tweaked (check the docstring for full details), but in practice there are only a few we need to concern ourselves with. The primary ones of interest are


	n_neighbors;


	diversify_prob; and


	pruning_degree_multiplier.




We’ll look at each in turn to get a quick understanding of what they do. First up is n_neighbors. By default this is 30; more neighbors leads to a more accurate (albeit slower) index, fewer neighbors leads to a faster index at the cost of accuracy. In general for a high accuracy (on the order or 90%+) index you might want an n_neighbors value in the range of fifty to one-hundred (a lot will depend on other issues, such as the dataset itself, and the metric used – angular metrics
generally need higher n_neighbors values). For fast indexes you can set it more in the range of five to twenty (again, dependent on the dataset itself and the metric; a little experimentation may be required). Let’s try a couple of values with the fashion-mnist dataset and see how it works.


[24]:





%%time
accurate_index = pynndescent.NNDescent(fmnist_train, n_neighbors=50)
accurate_index.prepare()













CPU times: user 1min 21s, sys: 1.77 s, total: 1min 23s
Wall time: 35.1 s






It takes a little longer to construct the index. Querying will also be a little slower.


[25]:





%%time
accurate_neighbors = accurate_index.query(fmnist_test, epsilon=0.2)













CPU times: user 1.39 s, sys: 20.2 ms, total: 1.41 s
Wall time: 1.42 s







[26]:





acc_index_accuracy_stats = accuracy_per_query_point(accurate_neighbors, tree_neighbors)
sns.distplot(acc_index_accuracy_stats, kde=False)
plt.title("Distribution of accuracy per query point")
plt.xlabel("Accuracy")
print(f"Average accuracy of {np.mean(acc_index_accuracy_stats)}")













Average accuracy of 0.9980899999999999
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But we see that we are now essentially just about perfect with our accuracy – only a few query points have any neighbors at all that aren’t true nearest neighbors (and they are almost certainly very close).

Now we can go the other way, and try to make a very very fast index (supposing we want to make an awful lot of queries at a very high throughput rate). We can decrease n_neighbors.


[27]:





%%time
fast_index = pynndescent.NNDescent(fmnist_train, n_neighbors=5)
fast_index.prepare()













/Users/leland/anaconda3/envs/numba51/lib/python3.8/site-packages/scipy/sparse/_index.py:124: SparseEfficiencyWarning: Changing the sparsity structure of a csr_matrix is expensive. lil_matrix is more efficient.
  self._set_arrayXarray(i, j, x)












CPU times: user 23.5 s, sys: 974 ms, total: 24.5 s
Wall time: 9.15 s







[28]:





%%time
fast_neighbors = fast_index.query(fmnist_test, epsilon=0.0)













CPU times: user 290 ms, sys: 13.8 ms, total: 304 ms
Wall time: 305 ms







[29]:





fast_index_accuracy_stats = accuracy_per_query_point(fast_neighbors, tree_neighbors)
sns.distplot(fast_index_accuracy_stats, kde=False)
plt.title("Distribution of accuracy per query point")
plt.xlabel("Accuracy")
print(f"Average accuracy of {np.mean(fast_index_accuracy_stats)}")













Average accuracy of 0.6279
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The results are not that accurate – there are some query points that got no neighbors right (although it likely still got close-by points). However is speed is of the essence we have gotten under the time we were previously capable of with an epsilon of 0.0. Depending on your needs, and the nature of your dataset you can play with n_neighbors to find the trade-off between speed and accuracy that best suits you.

The next step is diversify_prob. When PyNNDescent is constructing it’s graph based index it tries to “diversify” the edges, pruning away some that are largely redundant. The value of diversify_prob is the probability that an edge identified as redundant will get pruned. The more edges that get pruned away the less accurate the index is, but with fewer edges searching becomes much faster. If you want as accurate an index as you can get then turn diversify_prob to 0.0. For speed
you should obviously use 1.0 and prune away as many edges as you can. The default value is, in fact, 1.0 since it is usually worth it to edges identified by the diversify step. Let’s try setting it to 0.0 and see how that effects speed and accuracy.


[30]:





%%time
accurate_index = pynndescent.NNDescent(fmnist_train, n_neighbors=50, diversify_prob=0.0)
accurate_index.prepare()













CPU times: user 1min 47s, sys: 1.07 s, total: 1min 48s
Wall time: 40.6 s







[31]:





%%time
accurate_neighbors = accurate_index.query(fmnist_test, epsilon=0.2)













CPU times: user 3.04 s, sys: 37.6 ms, total: 3.07 s
Wall time: 3.12 s







[32]:





acc_index_accuracy_stats = accuracy_per_query_point(accurate_neighbors, tree_neighbors)
sns.distplot(acc_index_accuracy_stats, kde=False)
plt.title("Distribution of accuracy per query point")
plt.xlabel("Accuracy")
print(f"Average accuracy of {np.mean(acc_index_accuracy_stats)}")













Average accuracy of 0.9999299999999999
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At this point out of ten-thousand query points, each with 10 neighbors, we are getting a grand total of eight wrong – that’s eight out of a hundred-thousand! Of course our query time is up to several seconds now, but that still beats the many minutes of the kd-trees by a wide margin.

We still have one parameter left however – the pruning_degree_multplier. This gives the multiple of the number of neighbors many edges that any given vertex in the search graph is allowed to have. So if n_neighbors is 30 and the pruning_degree_multiplier is the default 1.5 then any vertex in the graph can have at most forty-five edges connected to it. This prevents hubs (which form in high dimensional spaces) causing the search stage to blow out in complexity. It can be tuned,
however, to trade off between speed and accuracy. Higher multiples result in more accurate graphs with more edges that take longer to search. Low multiples (including less than one!) result in graphs with many fewer edges that are fast to search, but may get stuck in local minima or fail to find the true nearest neighbors. Let’s play with that dial for a moment…


[33]:





%%time
accurate_index = pynndescent.NNDescent(
    fmnist_train,
    n_neighbors=50,
    diversify_prob=0.0,
    pruning_degree_multiplier=3.0
)
accurate_index.prepare()













CPU times: user 1min 47s, sys: 1.35 s, total: 1min 48s
Wall time: 41.2 s







[34]:





%%time
accurate_neighbors = accurate_index.query(fmnist_test, epsilon=0.2)













CPU times: user 3.65 s, sys: 69.9 ms, total: 3.72 s
Wall time: 3.71 s







[35]:





acc_index_accuracy_stats = accuracy_per_query_point(accurate_neighbors, tree_neighbors)
sns.distplot(acc_index_accuracy_stats, kde=False)
plt.title("Distribution of accuracy per query point")
plt.xlabel("Accuracy")
print(f"Average accuracy of {np.mean(acc_index_accuracy_stats)}")













Average accuracy of 1.0
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By turning up the pruning_degree_multiplier we have achieved perfect accuracy – and still at a very tiny fraction of the query time required for the exact kd-tree query. Of course on a different more complex dataset these same settings may not suffice. Ultimately what we lose is the guarantee that we will get the true nearest neighbors.

We can turn the dial the other way, however, and get very fast searching that is potentially still fairly accurate (compared to the very low n_neighbors version).


[36]:





%%time
fast_index = pynndescent.NNDescent(
    fmnist_train,
    n_neighbors=10,
    diversify_prob=1.0,
    pruning_degree_multiplier=0.5,
)
fast_index.prepare()













/Users/leland/anaconda3/envs/numba51/lib/python3.8/site-packages/scipy/sparse/_index.py:124: SparseEfficiencyWarning: Changing the sparsity structure of a csr_matrix is expensive. lil_matrix is more efficient.
  self._set_arrayXarray(i, j, x)












CPU times: user 27.2 s, sys: 1.14 s, total: 28.3 s
Wall time: 11.3 s







[37]:





%%time
fast_neighbors = fast_index.query(fmnist_test, epsilon=0.0)













CPU times: user 302 ms, sys: 16 ms, total: 318 ms
Wall time: 317 ms







[38]:





fast_index_accuracy_stats = accuracy_per_query_point(fast_neighbors, tree_neighbors)
sns.distplot(fast_index_accuracy_stats, kde=False)
plt.title("Distribution of accuracy per query point")
plt.xlabel("Accuracy")
print(f"Average accuracy of {np.mean(fast_index_accuracy_stats)}")













Average accuracy of 0.65031
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In general this isn’t a good idea, but it gives you an idea of the trade-offs that can be made.



Nearest neighbors of the training set

While querying for nearest neighbors of new points is a common use case, for many tasks, such as manifold learning or density based clustering, you want the nearest neighbors of all the points in the training set. You could build the index and then query for all the training points – but because PyNNDescent builds a nearest neighbor graph as part of its index you can actually get there faster by just building the index and extracting the results directly. This is, for example, what libraries
like UMAP [https://github.com/lmcinnes/umap] and OpenTSNE [https://github.com/pavlin-policar/openTSNE] do.

This is why the prepare step is kept separate. It is extra overhead, preparing the index to be queried for new unseen data, that isn’t required for the use case of simply extracting the nearest neighbors of the full training set. Thus if we just build, but don’t prepare, the index:


[39]:





%%time
index = pynndescent.NNDescent(fmnist_train)













CPU times: user 36.5 s, sys: 375 ms, total: 36.9 s
Wall time: 14.8 s






We can then extract the nearest neighbors of each training sample by using the neighbor_graph attribute.


[40]:





index.neighbor_graph








[40]:







(array([[    0, 25719, 27655, ..., 38300,  4643,  7353],
        [    1, 42564, 37550, ..., 12169, 50358, 49552],
        [    2, 53513, 35424, ..., 16891, 29542, 40182],
        ...,
        [59997, 45348, 22272, ..., 58896, 53292, 11657],
        [59998, 17378,  8495, ...,  4389, 23426, 34912],
        [59999, 11912, 40600, ..., 31966, 45245, 58489]]),
 array([[   0.     , 1188.7826 , 1215.344  , ..., 1417.4388 , 1422.567  ,
         1424.7806 ],
        [   0.     , 1048.0482 , 1068.395  , ..., 1219.923  , 1222.1665 ,
         1225.5464 ],
        [   0.     ,  532.61993,  632.16534, ...,  885.45245,  886.3972 ,
          887.8125 ],
        ...,
        [   0.     , 1086.2596 , 1118.3738 , ..., 1303.3699 , 1306.9954 ,
         1308.5958 ],
        [   0.     ,  685.18243,  690.4209 , ...,  795.6589 ,  796.894  ,
          797.1349 ],
        [   0.     ,  884.41394,  886.4903 , ..., 1048.9224 , 1049.3502 ,
         1051.806  ]], dtype=float32))






The first array is n_samples by n_neighbors such that the ith row contains the n_neighbors nearest neighbors of the ith data point. The second array is the associated distances to each of those neighboring points. From the distance array you can see that each row is sorted, with the closest neighbors first, and the furthest last.

If you are simply wanting to extract this sort of data for further processing this is the fastest way to do it, and since you only need to run the index build and not actually query for any data, this can often be faster than some other approximate nearest neighbor techniques that need to be queried after being constructed.





          

      

      

    

  

    
      
          
            
  
PyNNDescent with different metrics

In the initial tutorial we looked at how to get PyNNDescent running on your data, and how to query the indexes it builds. Implicit in all of that was the measure of distance used to determine what counts as the “nearest” neighbors. By default PyNNDescent uses the euclidean metric (because that is what people generally expect when they talk about distance). This is not the only way to measure distance however, and is often not the right choice for very high dimensional data for example. Let’s
look at how to use PyNNDescent with other metrics.

First we’ll need some libraries, and some test data. As before we will use ann-benchmarks for data, so we will reuse the data download function from the previous tutorial.


[1]:





import pynndescent
import numpy as np
import h5py
from urllib.request import urlretrieve
import os








[2]:





def get_ann_benchmark_data(dataset_name):
    if not os.path.exists(f"{dataset_name}.hdf5"):
        print(f"Dataset {dataset_name} is not cached; downloading now ...")
        urlretrieve(f"http://ann-benchmarks.com/{dataset_name}.hdf5", f"{dataset_name}.hdf5")
    hdf5_file = h5py.File(f"{dataset_name}.hdf5", "r")
    return np.array(hdf5_file['train']), np.array(hdf5_file['test']), hdf5_file.attrs['distance']








Built in metrics

Let’s grab some data where euclidean distance doesn’t make sense. We’ll use the NY-Times dataset, which is a TF-IDF [https://en.wikipedia.org/wiki/Tf%E2%80%93idf] matrix of data generated from NY-Times news stories. The particulars are less important here, but what matters is that the most sensible way to measure distance on this data is with an angular metric, such as cosine distance.


[3]:





nytimes_train, nytimes_test, distance = get_ann_benchmark_data('nytimes-256-angular')
nytimes_train.shape








[3]:







(290000, 256)






Now that we have the data we can check the distance measure suggested by ann-benchmarks


[4]:





distance








[4]:







'angular'






So an angular measure of distance – cosine distance will suffice. How do we manage to get PyNNDescent working with cosine distance (which isn’t even a real metric! it violates the triangle inequality) instead of standard euclidean?


[5]:





%%time
index = pynndescent.NNDescent(nytimes_train, metric="cosine")
index.prepare()













/Users/leland/anaconda3/envs/umap_0.5dev/lib/python3.8/site-packages/scipy/sparse/_index.py:126: SparseEfficiencyWarning: Changing the sparsity structure of a csr_matrix is expensive. lil_matrix is more efficient.
  self._set_arrayXarray(i, j, x)












CPU times: user 5min 29s, sys: 6.4 s, total: 5min 35s
Wall time: 2min 9s






That’s right, it uses the scikit-learn standard of the metric keyword and accepts a string that names the metric. We can now query the index, and it will use that metric in the query as well.


[6]:





%%time
neighbors = index.query(nytimes_train)













CPU times: user 20.3 s, sys: 387 ms, total: 20.7 s
Wall time: 21.2 s












/Users/leland/anaconda3/envs/umap_0.5dev/lib/python3.8/site-packages/pynndescent/pynndescent_.py:1628: RuntimeWarning: invalid value encountered in correct_alternative_cosine
  dists = self._distance_correction(dists)






It is worth noting at this point that these results will probably be a little sub-optimal since angular distances are harder to index, and as a result to get the same level accuracy in the nearest neighbor approximation we should be using a larger value than the default 30 for n_neighbors. Beyond that, however, nothing else changes from the tutorial earlier – except that we can’t use kd-trees to learn the true neighbors, since they require distances that respect the triangle inequality.

How many metrics does PyNNDescent support out of the box? Quite a few actually:


[7]:





for dist in pynndescent.distances.named_distances:
    print(dist)













euclidean
l2
sqeuclidean
manhattan
taxicab
l1
chebyshev
linfinity
linfty
linf
minkowski
seuclidean
standardised_euclidean
wminkowski
weighted_minkowski
mahalanobis
canberra
cosine
dot
correlation
hellinger
haversine
braycurtis
spearmanr
kantorovich
wasserstein
tsss
true_angular
hamming
jaccard
dice
matching
kulsinski
rogerstanimoto
russellrao
sokalsneath
sokalmichener
yule






Some of these are repeats or alternate names for the same metric, and some of these are fairly simple, but others, such as spearmanr, or hellinger are useful statistical measures not often implemented elsewhere, and others, such as wasserstein are complex and hard to compute metrics. Having all of these readily available in a fast approximate nearest neighbor library is one of PyNNDescent’s strengths.



Custom metrics

We can go even further in terms of interesting metrics however. You can write your own custom metrics and hand them to PyNNDescent to use on your data. There, of course, a few caveats with this. Many nearest neighbor libraries allow for the possibility of user defined metrics. If you are using Python this often ends up coming in two flavours:


	Write some C, C++ or Cython code and compile it against the library itself


	Write a python distance function, but lose almost all performance




With PyNNDescent we get a different trade-off. Because we use Numba [http://numba.pydata.org/] for just-in-time compiling of Python code instead of a C or C++ backend you don’t need to do an offline compilation step and can instead have your custom Python distance function compiled and used on the fly. The cost for that is that the custom distance function you write must be a numba jitted function. This, in turn, means that you can only use Python functionality that is `supported by
numba <>`__. That is still a fairly large amount of functionality, especially when we are talking about numerical work, but it is a limit. It also means that you will need to import numba and decorate your custom distance function accordingly. Let’s look at how to do that.


[8]:





import numba







Let’s start by simply implementing euclidean distance where \(d(\mathbf{x},\mathbf{y}) = \sqrt{\sum_i (\mathbf{x}_i - \mathbf{y}_i)^2}\). This is already implemented in PyNNDescent, but it is a simple distance measure that everyone knows and will serve to illustrate the process. First let’s write the function – using numpy functionality this will be fairly short:


[9]:





def euclidean(x, y):
    return np.sqrt(np.sum((x - y)**2))







Now we need to get the function compiled so PyNNDescent can use it. That is actually as easy as adding a decorator to the top of the function telling numba that it should compile the function when it gets called.


[10]:





@numba.jit
def euclidean(x, y):
    return np.sqrt(np.sum((x - y)**2))







We can now pass this function directly to PyNNdescent as a metric and everything will “just work”. We’ll just train on the smaller test set since it will take a while.


[11]:





%%time
index = pynndescent.NNDescent(nytimes_test, metric=euclidean)













CPU times: user 21.5 s, sys: 220 ms, total: 21.7 s
Wall time: 12 s






This is a little slower than we might have expected, and that’s because a great deal of the computation time is spent evaluating that metric. While numba will compile what we wrote we can make it a little faster if we look through the numba performance tips documentation [https://numba.readthedocs.io/en/stable/user/performance-tips.html]. The two main things to note are that we can use explicit loops instead of numpy routines, and we can add arguments to the decorator such as
fastmath=True to speed things up a little. Let’s rewrite it:


[12]:





@numba.jit(fastmath=True)
def euclidean(x, y):
    result = 0.0
    for i in range(x.shape[0]):
        result += (x[i] - y[i])**2
    return np.sqrt(result)








[13]:





%%time
index = pynndescent.NNDescent(nytimes_test, metric=euclidean)













CPU times: user 12.3 s, sys: 116 ms, total: 12.4 s
Wall time: 8.53 s






That is faster! If we are really on the hunt for performance however, you might note that, for the purposes of finding nearest neighbors the exact values of the distance are not as important as the ordering on distances. In other words we could use the square of euclidean distance and we would get all the same neighbors (since the square root is a monotonic order preserving function of squared euclidean distance). That would, for example, save us a square root computation. We could do the square
roots afterwards to just the distances to the nearest neighbors. Let’s reproduce what PyNNDescent actually uses internally for euclidean distance:


[14]:





@numba.njit(
    [
        "f4(f4[::1],f4[::1])",
        numba.types.float32(
            numba.types.Array(numba.types.float32, 1, "C", readonly=True),
            numba.types.Array(numba.types.float32, 1, "C", readonly=True),
        ),
    ],
    fastmath=True,
    locals={
        "result": numba.types.float32,
        "diff": numba.types.float32,
        "dim": numba.types.uint32,
        "i": numba.types.uint16,
    },
)
def squared_euclidean(x, y):
    r"""Squared euclidean distance.

    .. math::
        D(x, y) = \sum_i (x_i - y_i)^2
    """
    result = 0.0
    dim = x.shape[0]
    for i in range(dim):
        diff = x[i] - y[i]
        result += diff * diff

    return result








That is definitely more complicated! Most of it, however, is arguments to the decorator giving it extra typing information to let it squeeze out every drop of performance possible. By default numba will infer types, or even compile different versions for the different types it sees. With a little extra information, however, it can make smarter decisions and optimizations during compilation. Let’s see how fast that goes:


[15]:





%%time
index = pynndescent.NNDescent(nytimes_test, metric=squared_euclidean)













CPU times: user 10.6 s, sys: 96.2 ms, total: 10.7 s
Wall time: 7.64 s






Definitely faster again – so there are significant gains to be had if you are willing to put in some work to write your function. Still, the naive approach we started with, just decorating the obvious implementation, did very well, so unless you desperately need top tier performance for your custom metric a straightforward approach will suffice. And for comparison here is the tailored C++ implementation that libraries like nmslib [https://github.com/nmslib/nmslib] and
hnswlib [https://github.com/nmslib/hnswlib] use:

static float
L2SqrSIMD16Ext(const void *pVect1v, const void *pVect2v, const void *qty_ptr) {
    float *pVect1 = (float *) pVect1v;
    float *pVect2 = (float *) pVect2v;
    size_t qty = *((size_t *) qty_ptr);
    float PORTABLE_ALIGN32 TmpRes[8];
    size_t qty16 = qty >> 4;

    const float *pEnd1 = pVect1 + (qty16 << 4);

    __m256 diff, v1, v2;
    __m256 sum = _mm256_set1_ps(0);

    while (pVect1 < pEnd1) {
        v1 = _mm256_loadu_ps(pVect1);
        pVect1 += 8;
        v2 = _mm256_loadu_ps(pVect2);
        pVect2 += 8;
        diff = _mm256_sub_ps(v1, v2);
        sum = _mm256_add_ps(sum, _mm256_mul_ps(diff, diff));

        v1 = _mm256_loadu_ps(pVect1);
        pVect1 += 8;
        v2 = _mm256_loadu_ps(pVect2);
        pVect2 += 8;
        diff = _mm256_sub_ps(v1, v2);
        sum = _mm256_add_ps(sum, _mm256_mul_ps(diff, diff));
    }

    _mm256_store_ps(TmpRes, sum);
    return TmpRes[0] + TmpRes[1] + TmpRes[2] + TmpRes[3] + TmpRes[4] + TmpRes[5] + TmpRes[6] + TmpRes[7];
}





Comparatively, the python code, even with its extra numba decorations, looks pretty straightforward. Notably (at last testing) the numba code and this C++ code (when suitably compiled with AVX flags etc.) have essentially indistinguishable performance. Numba is awfully good at finding optimizations for numerical code.


Beware of bounded distances

There is one remaining caveat on custom distance functions that is important. Many distances, such as cosine distance and jaccard distance are bounded: the values always fall in some fixed finite range (in these cases between 0 and 1). When querying new data points against an index PyNNDescent bounds the search by some multiple (1 + epsilon) of the most distant of the the top k neighbors found so far. This allows a limited amount of backtracking and avoids getting stuck in local minima. It does,
however, not play well with bounded distances – a small but non-zero epsilon can end up failing to bound the search at all (suppose epsilon is 0.2 and the most distant of the the top k neighbors has cosine distance 0.8 for example). The trick to getting around this is the same trick described above when we decided not to bother taking the square root of the euclidean distance – we can apply transform to the distance values that preserves all ordering. This means that, for example, internally
PyNNDescent uses the negative log of the cosine similarity instead of cosine distance (and converts the distance values when done). You will want to use a similar trick if your distance function has a strict finite upper bound.






          

      

      

    

  

    
      
          
            
  
Working with sparse data

Not all data conveniently fits in numpy arrays; sometimes a lot of the data entries are zero and we want to use a sparse data storage format. This is especially common for extremely high dimensional data (data with thousands, or even hundreds of thousands of dimensions). Such data is a lot harder to work with for many tasks, including nearest neighbor search. Let’s see how we can work with sparse data like this in PyNNDescent.

First we’ll need some data. For that let’s use a standard NLP dataset that we can pull together with scikit-learn.


[9]:





import pynndescent
import sklearn.datasets
import sys







We need to fetch the train and test sets separately, but conveniently the data has already been converted from the text of newsgroup messages into TF-IDF [https://en.wikipedia.org/wiki/Tf%E2%80%93idf] matrices. This means that we have a feature column for each word in the vocabulary – though often the vocabulary is pruned a little.


[2]:





news_train = sklearn.datasets.fetch_20newsgroups_vectorized(subset='train')
news_test = sklearn.datasets.fetch_20newsgroups_vectorized(subset='test')







Now that we have the data let’s see what it looks like:


[3]:





news_train.data








[3]:







<11314x130107 sparse matrix of type '<class 'numpy.float64'>'
        with 1787565 stored elements in Compressed Sparse Row format>






Not a numpy array! Instead it is a SciPy sparse matrix [https://docs.scipy.org/doc/scipy/reference/sparse.html]. It has 11314 rows (so not many data samples), but 130107 columns (a lot of features – as noted, one for each word in the vocabulary). Despite that large size there are only 17876565 non-zero entries. The trick with sparse matrices is that they only store information about those entries that aren’t zero – they need to keep track of where they are, and what the value is, but
they can ignore all the zero entries. If this were a raw numpy array with all those zeros in place it would have …


[7]:





11314 * 130107








[7]:







1472030598






… a lot of entries. To store all of that in memory would require (at 4 bytes per entry) …


[8]:





(11314 * 130107 * 4) / 1024**3








[8]:







5.48374130576849






… almost 5.5 GB! That is possible, but likely impractical on a laptop. And this is for a case with a small number of data samples. With more samples the size would grow enormous very quickly indeed. Instead we have an object that uses …


[13]:





(
    news_train.data.data.nbytes
     + news_train.data.indices.size
     + news_train.data.indptr.nbytes
) / 1024**2








[13]:







15.385956764221191






… only 15 MB. You will also note that to extract that information required poking at some of the internal attributes of the sparse matrix (data, indices, and indptr). This is the downside of the sparse format – they are more complicated to work with. It is certainly the case that many tools are simply not able to deal with these sparse structures at all, and the data would need to be cast to a numpy array and take up that full amount of memory.

Fortunately PyNNDescent is built to work with sparse matrix data. To see that in practice let’s hand the sparse matrix directly to NNDescent and watch it work.


[4]:





%%time
index = pynndescent.NNDescent(news_train.data, metric="cosine")













CPU times: user 7min 3s, sys: 1.77 s, total: 7min 5s
Wall time: 2min 24s






You will note that this is a much longer index construction time than we would normally expect with only around eleven thousand data points – there is overhead in working with sparse matrices that makes it slower. That, combined with the fact that the data has over a hundred and thirty-thousand dimensions means this is a computationally intensive task. Still it is likely better than working with the full 5.5 GB numpy array, and certainly better when dealing with larger sparse matrices where
there is simply no way to instantiate a numpy array large enough to hold the data.

We can query the index – but we have to use the same sparse matrix structure (we can’t query with numpy arrays for am index built with sparse data). Fortunately the test data is already in that format so we can simply perform the query:


[5]:





%%time
neighbors = index.query(news_test.data)













CPU times: user 1min 25s, sys: 1.5 s, total: 1min 26s
Wall time: 1min 26s






And that’s it! Everything works essentially transparently with sparse data – it is just slower. Still, slower is a lot better than not working at all.


[6]:





neighbors








[6]:







(array([[ 1635,  4487,  9220, ..., 10071,  9572,  1793],
        [ 8648,   567,  2123, ...,   783,  6031,  9275],
        [ 7345,  4852,  4674, ...,  1679,  7518,  4228],
        ...,
        [ 6137, 10518,  6469, ...,  6937, 11083,  6164],
        [ 2926,  2011,  1679, ...,  7229,  1635, 11270],
        [ 3215,  3665,  4899, ..., 10810,  9907,  9311]], dtype=int32),
 array([[0.34316891, 0.34799916, 0.35074973, ..., 0.35952544, 0.36456954,
         0.36472946],
        [0.25881797, 0.26937056, 0.28056568, ..., 0.29210907, 0.29795945,
         0.29900843],
        [0.41124642, 0.42213005, 0.4426493 , ..., 0.46922857, 0.4724912 ,
         0.47429329],
        ...,
        [0.21533132, 0.22482073, 0.24046886, ..., 0.26193857, 0.26805884,
         0.26866162],
        [0.19485909, 0.19515198, 0.19891578, ..., 0.20851403, 0.21159202,
         0.21265447],
        [0.43528455, 0.43638128, 0.4378109 , ..., 0.45176154, 0.452402  ,
         0.45243692]]))






One final caveat is that custom distance metrics for sparse data need to be able to work with sparse data and thus have a different function signature. In practice this is really something you only want to try if you are familiar with working with sparse data structures. If that’s the case then you can look through pynndescent.sparse.py for examples of many common distance functions and it will quickly become clear what is required.




          

      

      

    

  

    
      
          
            
  
Working with Scikit-learn pipelines

Nearest neighbor search is a fundamental building block of many machine learning algorithms, including in supervised learning with kNN-classifiers and kNN-regressors, and unsupervised learning with manifold learning, and clustering. It would be useful to be able to bring the speed of PyNNDescent’s approximate nearest neighbor search to bear on these problems without having to re-implement everything from scratch. Fortunately Scikit-learn has done most of the work for us with their
KNeighborsTransformer [https://scikit-learn.org/stable/modules/neighbors.html#neighbors-transformer], which provides a means to insert nearest neighbor computations into sklearn pipelines, and feed the results to many of their models that make use of nearest neighbor computations. It is worth reading through the documentation they have, because we are going to use PyNNDescent as a drop in replacement.

To make this as simple as possible PyNNDescent implements a class PyNNDescentTransformer that acts as a KNeighborsTransformer and can be dropped into all the same pipelines. Let’s see an example of this working …


[1]:





from sklearn.manifold import Isomap, TSNE
from sklearn.neighbors import KNeighborsTransformer
from pynndescent import PyNNDescentTransformer
from sklearn.pipeline import make_pipeline
from sklearn.datasets import fetch_openml
from sklearn.utils import shuffle

import seaborn as sns







As usual we will need some data to play with. In this case let’s use a random subsample of MNIST digits.


[2]:





def load_mnist(n_samples):
    """Load MNIST, shuffle the data, and return only n_samples."""
    mnist = fetch_openml("mnist_784")
    X, y = shuffle(mnist.data, mnist.target, random_state=2)
    return X[:n_samples] / 255, y[:n_samples]








[3]:





data, target = load_mnist(10000)







Now we need to make a pipeline that feeds the nearest neighbor results into a downstream task. To demonstrate how this can work we’ll try manifold learning. First we will try out Isomap [https://en.wikipedia.org/wiki/Isomap] and then t-SNE [https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding]. In both cases we can provide a “precomputed” distance matrix, and if it is a sparse matrix (as output by KNeighborsTransformer) then any entry not explicitly provided as a
non-zero element of the matrix will be ignored (or treated as an effectively infinite distance). To make the whole thing work we simple make an sklearn pipeline (and could easily include pre-processing steps such as categorical encoding, or data scaling and standardisation as earlier steps if we wished) that first uses the KNeighborsTransformer to process the raw data into a nearest neighbor graph, and then passes that on to either Isomap or TSNE. For comparison we’ll drop in a
PyNNDescentTransformer instead and see how that effects the results.


[4]:





sklearn_isomap = make_pipeline(
    KNeighborsTransformer(n_neighbors=15),
    Isomap(metric='precomputed')
)
pynnd_isomap = make_pipeline(
    PyNNDescentTransformer(n_neighbors=15),
    Isomap(metric='precomputed')
)
sklearn_tsne = make_pipeline(
    KNeighborsTransformer(n_neighbors=92),
    TSNE(metric='precomputed', random_state=42)
)
pynnd_tsne = make_pipeline(
    PyNNDescentTransformer(n_neighbors=92, early_termination_value=0.05),
    TSNE(metric='precomputed', random_state=42)
)







First let’s try Isomap. The algorithm first constructs a k-nearest-neighbor graph (which our transformers will handle in the pipeline), then measures distances between points as path lengths in that graph. Finally it performs an eigendecomposition of the resulting distance matrix. We can do much to speed up the later two steps, which are still non-trivial, but hopefully we can get some speedup by substituting in the approximate nearest neighbor computation.


[5]:





%%time
sklearn_iso_map = sklearn_isomap.fit_transform(data)













CPU times: user 2min 42s, sys: 1.76 s, total: 2min 44s
Wall time: 2min 43s







[6]:





%%time
pynnd_iso_map = pynnd_isomap.fit_transform(data)













CPU times: user 1min 14s, sys: 2.85 s, total: 1min 17s
Wall time: 1min 17s






A two-times speedup is not bad, especially since we only accelerated one component of the full algorithm. It is quite good considering it was simply a matter of dropping a different class into a pipeline. More importantly as we scale to larger amounts of data the nearest neighbor search comes to dominate the over algorithm run-time, so we can expect to only get better speedups for more data. We can plot the results to ensure we are getting qualitatively the same thing.


[7]:





sns.scatterplot(x=sklearn_iso_map.T[0], y=sklearn_iso_map.T[1], hue=target, palette="Spectral", size=1);












[image: _images/pynndescent_in_pipelines_11_0.png]





[8]:





sns.scatterplot(x=pynnd_iso_map.T[0], y=pynnd_iso_map.T[1], hue=target, palette="Spectral", size=1);












[image: _images/pynndescent_in_pipelines_12_0.png]




Now let’s try t-SNE. This algorithm requires nearest neighbors as a first step, and then the second major part, in terms of computation time, is the optimization of a layout of a modified k-neighbor graph. We can hope for some improvement in the first part, which usually accounts for around half the overall run-time for small data (and comes to consume a majority of the run-time for large datasets).


[9]:





%%time
sklearn_tsne_map = sklearn_tsne.fit_transform(data)













CPU times: user 7min 1s, sys: 3.72 s, total: 7min 5s
Wall time: 3min 8s







[10]:





%%time
pynnd_tsne_map = pynnd_tsne.fit_transform(data)













CPU times: user 5min 32s, sys: 3.7 s, total: 5min 35s
Wall time: 1min 29s






Again we have an approximate two-times speedup. Again this was achieved by simply substituting a different class into the pipeline (although in the case we tweaked the early_termination_value so it would stop sooner). Again we can look at the qualitative results and see that we are getting something very similar.


[11]:





sns.scatterplot(x=sklearn_tsne_map.T[0], y=sklearn_tsne_map.T[1], hue=target, palette="Spectral", size=1);












[image: _images/pynndescent_in_pipelines_17_0.png]





[12]:





sns.scatterplot(x=pynnd_tsne_map.T[0], y=pynnd_tsne_map.T[1], hue=target, palette="Spectral", size=1);












[image: _images/pynndescent_in_pipelines_18_0.png]




So the results, in both cases, look pretty good, and we did get a good speed-up. A question remains – how fast was the nearest neighbor component, and how accurate was it? We can write a simple function to measure the neighbor accuracy: compute the average percentage intersection in the neighbor sets of each sample point. Then let’s just run the transformers and compare the times as well as computing the actual percentage accuracy.


[13]:





import numba
import numpy as np

@numba.njit()
def arr_intersect(ar1, ar2):
    aux = np.sort(np.concatenate((ar1, ar2)))
    return aux[:-1][aux[:-1] == aux[1:]]

@numba.njit()
def neighbor_accuracy_numba(n1_indptr, n1_indices, n2_indptr, n2_indices):
    result = 0.0
    for i in range(n1_indptr.shape[0] - 1):
        indices1 = n1_indices[n1_indptr[i]:n1_indptr[i+1]]
        indices2 = n2_indices[n2_indptr[i]:n2_indptr[i+1]]
        n_correct = np.float64(arr_intersect(indices1, indices2).shape[0])
        result += n_correct / indices1.shape[0]
    return result / (n1_indptr.shape[0] - 1)

def neighbor_accuracy(neighbors1, neighbors2):
    return neighbor_accuracy_numba(
        neighbors1.indptr, neighbors1.indices, neighbors2.indptr, neighbors2.indices
    )








[14]:





%time true_neighbors = KNeighborsTransformer(n_neighbors=15).fit_transform(data)
%time pynnd_neighbors = PyNNDescentTransformer(n_neighbors=15).fit_transform(data)

print(f"Neighbor accuracy is {neighbor_accuracy(true_neighbors, pynnd_neighbors) * 100.0}%")













CPU times: user 1min 43s, sys: 177 ms, total: 1min 43s
Wall time: 1min 44s
CPU times: user 2.67 s, sys: 49 ms, total: 2.72 s
Wall time: 920 ms
Neighbor accuracy is 99.140625%






So for the Isomap case we went from taking over one and half minutes down to less then a second. While doing so we still achieved over 99% accuracy in the nearest neighbors. This seems like a good tradeoff.

By constrast t-SNE requires a much larger number of neighbors (approximately three times the desired perplexity value, which defaults to 30 in sklearn’s implementation). This is a little more of a challenge so we might expect it to take longer.


[15]:





%time true_neighbors = KNeighborsTransformer(n_neighbors=92).fit_transform(data)
%time pynnd_neighbors = PyNNDescentTransformer(n_neighbors=92, early_termination_value=0.05).fit_transform(data)

print(f"Neighbor accuracy is {neighbor_accuracy(true_neighbors, pynnd_neighbors) * 100.0}%")













CPU times: user 1min 42s, sys: 136 ms, total: 1min 42s
Wall time: 1min 43s
CPU times: user 25.2 s, sys: 545 ms, total: 25.7 s
Wall time: 7.37 s
Neighbor accuracy is 99.96612903225784%






We see that the KNeighborsTransformer takes the same amount of time for this – this is because it is making the choice, given the dataset size and dimensionality, to compute nearest neighbors by effectively computing the full distance matrix. That means regardless of how many neighbors we ask for it will take a largely constant amount of time.

In constrast we see that the PyNNDescentTransformer is having to work harder, taking almost eight seconds (still a lot better than one and half minutes!). The increased early_termination_value (the default is 0.001) stops the computation early, but even with this we are still getting over 99.9% accuracy! Certainly the minute and a half saved in computation time at this step is worth the drop of 0.033% accuracy in nearest neighbors. And these differences in computation time will only
increase as dataset sizes get larger.




          

      

      

    

  

    
      
          
            
  
How PyNNDescent works

PyNNDescent uses neighbor graph based searching to efficiently find good candidates for the nearest neighbors of query points from a large training set. While the basic ideas turn out to be quite simple, the layers of refinements and tricks used to get the highest degree of efficiency complicate things a lot. With that in mind we will begin with the simple naive approach and gradually work out further refinements and details as we go. The core concept, upon which most everything else is based,
is using a nearest neighbor graph to perform a search for approximate nearest neighbors.


Searching using a nearest neighbor graph

Suppose we are given a nearest neighbor graph (let’s ignore, for now, how we can have obtained such a thing without the ability to find nearest neighbors already). By a graph, I simply mean a network – a set of nodes connected by edges. By a nearest neighbor graph I mean that the graph has been derived from data existing in some sort of space for which we have a quantitative notion of similarity, or dissimilarity, or distance. In particular the graph is derived by making each data point a node
and connecting that data point, via edges, to the \(k\) most similar, least dissimilar, or closest other points. We would like to use this graph as an index structure for searching to find the nearest neighbors (points in the graph) of a new query point (potentially not a point in the graph) with respect to that notion of similarity of distance. How can we do this? We can do it via a kind of pruned breadth-first search of the graph, always keeping only the \(k\) best points we’ve found
so far. The algorithm, therefore, looks something like this:


	Choose a starting node in the graph (potentially randomly) as a candidate node


	Look at all nodes connected by an edge to the best untried candidate node in the graph


	Add all these nodes to our potential candidate pool


	Sort the candidate pool by closeness / similarity to the query point


	Truncate the pool to \(k\) best (as in closest to the query) candidates


	Return to step 2, unless we have already tried all the candidates in the pool




We can see this play out visually on a small graph. For this case we will let \(k=2\) and have a 2-neighbor graph constructed by points in a plane. The query point will be drawn as an orange ‘x’. We then search, exactly as described, and find ourselves steadily traversing the graph towards the query point.
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PyNNDescent Performance

How fast is PyNNDescent for approximate nearest neighbor search? How does it compare with other approximate nearest neighbor search algorithms and implementations? To answer these kinds of questions we’ll make use of the ann-benchmarks [https://github.com/erikbern/ann-benchmarks] suite of tools for benchmarking approximate nearest neighbor (ANN) search algorithms. The suite provides a wide array of datasets to benchmark on, and supports a wide array of ANN search libraries. Since the runtime
of these benchmarks is quite large we’ll be presenting results obtained earlier, and only for a selection of datasets and for the main state-of-the-art implementations. This page thus reflects the performance at a given point in time, and on a specific choice of benchmarking hardware. Implementations may (and likely will) improve, and different hardware will likely result in somewhat different performance characteristics amongst the implementations benchmarked here.

We chose the following implementations of ANN search based on their strong performance in ANN search benchmarks in general:


	Annoy (a tree based algorithm for comparison)


	HNSW from FAISS, Facebooks ANN library


	HNSW from nmslib, the reference implementation of the algorithm


	HNSW from hnswlib, a small spinoff library from nmslib


	ONNG from NGT, a more recent algorithm and implementaton with impressive performance


	PyNNDescent version 0.5




Not all the algorithms ran entirely successfully on all the datasets; where an algorithm gave spurious or unrepresentative results we have left it off rather the given benchmark.

The ann-benchmark suite is designed to look at the trade-off in performance between search accuracy and search speed (or other performance statistic, such as index creation time, or index size). Since this is a trade-off that can often be tuned by appropriately adjusting parameters ann-benchmarks handles this by running a predefined (for each algorithm or implementation) range of parameters. It then finds the pareto
frontier [https://en.wikipedia.org/wiki/Pareto_efficiency#Use_in_engineering] for the optimal speed / accuracy trade-off and presents this as a curve. The various implementations can then be compared in terms of the pareto frontier curves. The default choices of measure for ann-benchmarks puts recall (effective search accuracy) along the x-axis and queries-per-second (search speed) on the y-axis. Thus curves that are further up and / or more to the right are providing better speed and / or
more accuracy.

To get a good overview of the relative performance characteristics of the different implementations we’ll look at the speed / accuracy trade-off curves for a variety of datasets. This is because the dataset size, dimensionality, distribution and metric can all have non-trivial impacts on performance in various ways, and results for one dataset are not necessarily representative of how things will look for a different dataset. We will introduce each dataset in turn, and then look at the
performance curves. To start with we’ll consider datasets which use Euclidean distance.


Euclidean distance

Euclidean distance is the usual notion of distance that we are familiar with in everyday life, just extended to arbitrary dimensions (instead of only two or three). It is defined as \(d(\bar{x}, \bar{y}) = \sum_i (x_i - y_i)^2\) for vectors \(\bar{x} = (x_1, x_2, \ldots, x_D)\) and \(\bar{y} = (y_1, y_2, \ldots, y_D)\). It is widely used as a distance measure, but can have difficulties with high dimensional data in some cases.

The first dataset we will consider that uses Euclidean distance is the MNIST dataset. MNIST consists of grayscale images of handwritten digits (from 0 to 9). Each digit image is 28 by 28 pixels, which is usually unravelled into a single vectors of 784 dimensions. In total there are 70,000 images in the dataset, and ann-benchmarks uses the usual split into 60,000 training samples and 10,000 test samples. The ANN index is built on the training set, and then the test set is used as the query data
for benchmarking.

[image: MNIST performance]


Remember that up and to the right is better. Also note that the y axis (queries per second) is plotted in log scale so each major grid step represents an order of magnitude performance difference. We can see that PyNNDescent performs very well here, outpacing the other ANN libraries in the high accuracy range. It is worth noting, however, that for lower accuracy queries it finishes essentially on par with ONNG, and unlike ONNG and nmslib’s HNSW implementation, it does not extend to very high
performance but low accuracy queries. If speed is absolutely paramount, and you only need to be in the vaguely right ballpark for accuracy then PyNNDescent may not be the right choice here.

Next up for dataset is Fashion-MNIST. This was a dataset designed to be a drop in replacement for MNIST, but meant to be more challenging for machine learning tasks. Instead of grayscale images of digits it is grayscale images of fashion items (dresses, shirts, pants, boots, sandas, handbags, etc.). Just like MNIST each image is 28 by 28 pixels resulting in 784-dimensional vectors. Also just like MNIST there are 70,000 total images, split into 60,000 training images and 10,000 test images.

[image: Fashion-MNIST performance]


Again we see a very similar result (although this should not entirely be a surprise given the similarity of the dataset in terms of the number of samples and dimensionality). PyNNDescent performs very well in the high accuracy regime, but does not scale to the very high performance but low accuracy ranges that ONNG and nmslib’s HNSW manage. It is also worth noting the clear difference between the various graph based search algorithms and the tree based Annoy – while Annoy is a very impressive
ANN search implementation it compares poorly to the graph based search techniques on these datasets.

Next up is the SIFT dataset. SIFT stands for Scale-Invariant Feature Transform [https://en.wikipedia.org/wiki/Scale-invariant_feature_transform] and is a technique from compute vision for generating feature vectors from images. For ann-benchmarks this means that there exist some large databases of SIFT features from image datasets which can be used to test nearest neighbor search. In particular the SIFT dataset in ann-benchmarks is a dataset of one million SIFT vectors where each vector is
128-dimensional. This provides a good contrast to the earlier datasets which had relatively high dimensionality, but not an especially large number of samples. For ann-benchmarks the dataset is split into 990,000 training samples, and 10,000 test samples for querying with.

[image: SIFT-128 performance]


Again we see that PyNNDescent performs very well. This time, however, with the more challenging search problem presented by a training set this large, it does produce some lower accuracy searches and in those cases both ONG and nmslib’s HNSW outperform it. It’s also worth noting that in this lower dimensional dataset Annoy performs better, comparatively, than the previous datasets. Still, over the Euclidean distance datasets tested here PyNNDescent remains a clear winner for high accuracy
queries. Let’s move on to the angular distance based datasets.



Angular distance

Angular based distances measure the similarity of two vectors in terms of the angle they span – the greater the angle the larger the distance between the vectors. Thus two vectors of different length can be viewed as being very close as long as they are pointing in the same direction. Another way of looking at this is to imagine that the data is being projected onto a high dimensional sphere (by intersecting a ray in the vectors direction with a unit sphere), and distances are measured in terms
of arcs around the sphere.

In practice the most commonly used angular distance is cosine distance, defined as


\[d(\bar{x}, \bar{y}) = 1 - \sum_i \frac{x_i y_i}{\|\bar{x}\|_2 \|\bar{y}\|_2}\]

where \(\|\bar{x}\|_2\) denotes the \(\ell^2\) norm [https://en.wikipedia.org/wiki/Norm_%20(mathematics)#Euclidean_norm] of \(\bar{x}\). To see why this is a measure of angular distance note that \(\sum_i x_i y_i\) is the euclidean dot product of \(\bar{x}\) and \(\bar{y}\) and that the euclidean dot product formula gives \(\bar{x}\cdot \bar{y} = \|x\|_2 \|y\|_2 \cos\theta\) where \(\theta\) is the angle between the vectors.

In the case where the vectors all have unit norm the cosine distance reduces to just one minus the dot product of the vectors – which is sometimes used as an angular distance measure. Indeed, that is the case for our first dataset, the LastFM dataset. This dataset is constructed of 64 factors in a recommendation system for the Last FM online music service. It contains 292,385 training samples and 50,000 test samples. Compared to the other datasets explored so far this is considerably lower
dimensional and the distance computation is simpler. Let’s see what results we get.

[image: LastFM performance]


Here we see hnswlib and HNSW from nmslib performing extremely well – outpacing ONNG unlike we saw in the previous euclidean datasets. The HNSW implementation is FAISS is further behind. While PyNNDescent is not the fastest option on this dataset it is highly competitive with the two top performing HNSW implementations.

The next dataset is a GloVe dataset of word vectors. The GloVe datasets are generated from a word-word co-occurrence count matrix generated from vast collections of text. Each word that occurs (frequently enough) in the text will get a resulting vector, with the principle that words with similar meanings will be assigned vectors that are similar (in angular distance). The dimensionality of the generated vectors is an input to the GloVe algorithm. For the first of the the GloVe datasets we will
be looking at the 25 dimensional vectors. Since GloVe vectors were trained useing a vast corpus there are over one million different words represented, and thus we have 1,183,514 training samples and 10,000 test samples to work with. This gives is a low dimensional but extremely large dataset to work with.

[image: GloVe-25 performance]


In this case PyNNDescent and hnswlib are the apparent winners – although PyNNDescent, similar to the earlier examples, performs less well once we get below abot 80% accuracy.

Next we’ll move up to a higher dimensional version of GloVe vectors. These vectors were trained on the same underlying text dataset, so we have the same number of samples (both for train and test), but now we have 100 dimensional vectors. This makes the problem more challenging as the underlying distance computation is a little more expensive given the higher dimensionality.

[image: GloVe-100 performance]


This time it is ONNG that surges to the front of the pack. Relatively speaking PyNNDescent is not too far behind. This goes to show, however, how much performance can vary based on the exact nature of the dataset: while ONNG was a (relatively) poor performer on the 25-dimensional version of this data with hnswlib out in front, the roles are reversed for this 100-dimensional data.

The last dataset is the NY-Times dataset. This is data generated as dimension reduced (via PCA) TF-IDF [https://en.wikipedia.org/wiki/Tf%E2%80%93idf] vectors of New York Times articles. The resulting dataset has 290,000 training samples and 10,000 test samples in 256 dimensions. This is quite a challenging dataset, and all the algorithms have significantly lower query-per-second performance on this data.

[image: NY-Times performance]


Here we see that PyNNDescent and ONNG are the best performing implementations, particularly at the higher accuracy range (ONNG has a slight edge on PyNNDescent here).

This concludes our examination of performance for now. Having examined performance for many different datasets it is clear that the various algorithms and implementations vary in performance depending on the exact nature of the data. None the less, we hope that this has demonstrated that PyNNDescent has excellent performance characteristics across a wide variety of datasets, often performing better than many state-of-the-art implementations.
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PyNNDescent API Guide

PyNNDescent has only two classes NNDescent and PyNNDescentTransformer.


PyNNDescent


	
class pynndescent.pynndescent_.NNDescent(data, metric='euclidean', metric_kwds=None, n_neighbors=30, n_trees=None, leaf_size=None, pruning_degree_multiplier=1.5, diversify_prob=1.0, n_search_trees=1, tree_init=True, init_graph=None, init_dist=None, random_state=None, low_memory=True, max_candidates=None, n_iters=None, delta=0.001, n_jobs=None, compressed=False, parallel_batch_queries=False, verbose=False)

	NNDescent for fast approximate nearest neighbor queries. NNDescent is
very flexible and supports a wide variety of distances, including
non-metric distances. NNDescent also scales well against high dimensional
graph_data in many cases. This implementation provides a straightfoward
interface, with access to some tuning parameters.


	data: array of shape (n_samples, n_features)

	The training graph_data set to find nearest neighbors in.



	metric: string or callable (optional, default=’euclidean’)

	The metric to use for computing nearest neighbors. If a callable is
used it must be a numba njit compiled function. Supported metrics
include:



	euclidean


	manhattan


	chebyshev


	minkowski


	canberra


	braycurtis


	mahalanobis


	wminkowski


	seuclidean


	cosine


	correlation


	haversine


	hamming


	jaccard


	dice


	russelrao


	kulsinski


	rogerstanimoto


	sokalmichener


	sokalsneath


	yule


	hellinger


	wasserstein-1d







Metrics that take arguments (such as minkowski, mahalanobis etc.)
can have arguments passed via the metric_kwds dictionary. At this
time care must be taken and dictionary elements must be ordered
appropriately; this will hopefully be fixed in the future.



	metric_kwds: dict (optional, default {})

	Arguments to pass on to the metric, such as the p value for
Minkowski distance.



	n_neighbors: int (optional, default=30)

	The number of neighbors to use in k-neighbor graph graph_data structure
used for fast approximate nearest neighbor search. Larger values
will result in more accurate search results at the cost of
computation time.



	n_trees: int (optional, default=None)

	This implementation uses random projection forests for initializing the index
build process. This parameter controls the number of trees in that forest. A
larger number will result in more accurate neighbor computation at the cost
of performance. The default of None means a value will be chosen based on the
size of the graph_data.



	leaf_size: int (optional, default=None)

	The maximum number of points in a leaf for the random projection trees.
The default of None means a value will be chosen based on n_neighbors.



	pruning_degree_multiplier: float (optional, default=1.5)

	How aggressively to prune the graph. Since the search graph is undirected
(and thus includes nearest neighbors and reverse nearest neighbors) vertices
can have very high degree – the graph will be pruned such that no
vertex has degree greater than
pruning_degree_multiplier * n_neighbors.



	diversify_prob: float (optional, default=1.0)

	The search graph get “diversified” by removing potentially unnecessary
edges. This controls the volume of edges removed. A value of 0.0 ensures
that no edges get removed, and larger values result in significantly more
aggressive edge removal. A value of 1.0 will prune all edges that it can.



	n_search_trees: int (optional, default=1)

	The number of random projection trees to use in initializing searching or
querying.


Deprecated since version 0.5.5.





	tree_init: bool (optional, default=True)

	Whether to use random projection trees for initialization.



	init_graph: np.ndarray (optional, default=None)

	2D array of indices of candidate neighbours of the shape
(data.shape[0], n_neighbours). If the j-th neighbour of the i-th
instances is unknown, use init_graph[i, j] = -1



	init_dist: np.ndarray (optional, default=None)

	2D array with the same shape as init_graph,
such that metric(data[i], data[init_graph[i, j]]) equals
init_dist[i, j]



	random_state: int, RandomState instance or None, optional (default: None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.



	algorithm: string (optional, default=’standard’)

	This implementation provides an alternative algorithm for
construction of the k-neighbors graph used as a search index. The
alternative algorithm can be fast for large n_neighbors values.
The``’alternative’`` algorithm has been deprecated and is no longer
available.



	low_memory: boolean (optional, default=True)

	Whether to use a lower memory, but more computationally expensive
approach to index construction.



	max_candidates: int (optional, default=None)

	Internally each “self-join” keeps a maximum number of candidates (
nearest neighbors and reverse nearest neighbors) to be considered.
This value controls this aspect of the algorithm. Larger values will
provide more accurate search results later, but potentially at
non-negligible computation cost in building the index. Don’t tweak
this value unless you know what you’re doing.



	n_iters: int (optional, default=None)

	The maximum number of NN-descent iterations to perform. The
NN-descent algorithm can abort early if limited progress is being
made, so this only controls the worst case. Don’t tweak
this value unless you know what you’re doing. The default of None means
a value will be chosen based on the size of the graph_data.



	delta: float (optional, default=0.001)

	Controls the early abort due to limited progress. Larger values
will result in earlier aborts, providing less accurate indexes,
and less accurate searching. Don’t tweak this value unless you know
what you’re doing.



	n_jobs: int or None, optional (default=None)

	The number of parallel jobs to run for neighbors index construction.
None means 1 unless in a joblib.parallel_backend context.
-1 means using all processors.



	compressed: bool (optional, default=False)

	Whether to prune out data not needed for searching the index. This will
result in a significantly smaller index, particularly useful for saving,
but will remove information that might otherwise be useful.



	parallel_batch_queries: bool (optional, default=False)

	Whether to use parallelism of batched queries. This can be useful for large
batches of queries on multicore machines, but results in performance degradation
for single queries, so is poor for streaming use.



	verbose: bool (optional, default=False)

	Whether to print status graph_data during the computation.






	
query(query_data, k=10, epsilon=0.1)

	Query the training graph_data for the k nearest neighbors


	query_data: array-like, last dimension self.dim

	An array of points to query



	k: integer (default = 10)

	The number of nearest neighbors to return



	epsilon: float (optional, default=0.1)

	When searching for nearest neighbors of a query point this values
controls the trade-off between accuracy and search cost. Larger values
produce more accurate nearest neighbor results at larger computational
cost for the search. Values should be in the range 0.0 to 0.5, but
should probably not exceed 0.3 without good reason.






	indices, distances: array (n_query_points, k), array (n_query_points, k)

	The first array, indices, provides the indices of the graph_data
points in the training set that are the nearest neighbors of
each query point. Thus indices[i, j] is the index into the
training graph_data of the jth nearest neighbor of the ith query points.

Similarly distances provides the distances to the neighbors
of the query points such that distances[i, j] is the distance
from the ith query point to its jth nearest neighbor in the
training graph_data.










	
update(xs_fresh=None, xs_updated=None, updated_indices=None)

	Updates the index with a) fresh data (that is appended to
the existing data), and b) data that was only updated (but should not be appended
to the existing data).

Not applicable to sparse data yet.


	xs_fresh: np.ndarray (optional, default=None)

	2D array of the shape (n_fresh, dim) where dim is the dimension
of the data from which we built self.



	xs_updated: np.ndarray (optional, default=None)

	2D array of the shape (n_updates, dim) where dim is the dimension
of the data from which we built self.



	updated_indices: array-like of size n_updates (optional, default=None)

	Something that is convertable to list of ints.
If self is currently built from xs, then xs[update_indices[i]]
will be replaced by xs_updated[i].






None













	
class pynndescent.pynndescent_.PyNNDescentTransformer(n_neighbors=30, metric='euclidean', metric_kwds=None, n_trees=None, leaf_size=None, search_epsilon=0.1, pruning_degree_multiplier=1.5, diversify_prob=1.0, n_search_trees=1, tree_init=True, random_state=None, n_jobs=None, low_memory=True, max_candidates=None, n_iters=None, early_termination_value=0.001, parallel_batch_queries=False, verbose=False)

	PyNNDescentTransformer for fast approximate nearest neighbor transformer.
It uses the NNDescent algorithm, and is thus
very flexible and supports a wide variety of distances, including
non-metric distances. NNDescent also scales well against high dimensional
graph_data in many cases.

Transform X into a (weighted) graph of k nearest neighbors

The transformed graph_data is a sparse graph as returned by kneighbors_graph.


	n_neighbors: int (optional, default=5)

	The number of neighbors to use in k-neighbor graph graph_data structure
used for fast approximate nearest neighbor search. Larger values
will result in more accurate search results at the cost of
computation time.



	metric: string or callable (optional, default=’euclidean’)

	The metric to use for computing nearest neighbors. If a callable is
used it must be a numba njit compiled function. Supported metrics
include:



	euclidean


	manhattan


	chebyshev


	minkowski


	canberra


	braycurtis


	mahalanobis


	wminkowski


	seuclidean


	cosine


	correlation


	haversine


	hamming


	jaccard


	dice


	russelrao


	kulsinski


	rogerstanimoto


	sokalmichener


	sokalsneath


	yule


	hellinger


	wasserstein-1d







Metrics that take arguments (such as minkowski, mahalanobis etc.)
can have arguments passed via the metric_kwds dictionary. At this
time care must be taken and dictionary elements must be ordered
appropriately; this will hopefully be fixed in the future.



	metric_kwds: dict (optional, default {})

	Arguments to pass on to the metric, such as the p value for
Minkowski distance.



	n_trees: int (optional, default=None)

	This implementation uses random projection forests for initialization
of searches. This parameter controls the number of trees in that
forest. A larger number will result in more accurate neighbor
computation at the cost of performance. The default of None means
a value will be chosen based on the size of the graph_data.



	leaf_size: int (optional, default=None)

	The maximum number of points in a leaf for the random projection trees.
The default of None means a value will be chosen based on n_neighbors.



	pruning_degree_multiplier: float (optional, default=1.5)

	How aggressively to prune the graph. Since the search graph is undirected
(and thus includes nearest neighbors and reverse nearest neighbors) vertices
can have very high degree – the graph will be pruned such that no
vertex has degree greater than
pruning_degree_multiplier * n_neighbors.



	diversify_prob: float (optional, default=1.0)

	The search graph get “diversified” by removing potentially unnecessary
edges. This controls the volume of edges removed. A value of 0.0 ensures
that no edges get removed, and larger values result in significantly more
aggressive edge removal. A value of 1.0 will prune all edges that it can.



	n_search_trees: int (optional, default=1)

	The number of random projection trees to use in initializing searching or
querying.


Deprecated since version 0.5.5.





	search_epsilon: float (optional, default=0.1)

	When searching for nearest neighbors of a query point this values
controls the trade-off between accuracy and search cost. Larger values
produce more accurate nearest neighbor results at larger computational
cost for the search. Values should be in the range 0.0 to 0.5, but
should probably not exceed 0.3 without good reason.



	tree_init: bool (optional, default=True)

	Whether to use random projection trees for initialization.



	random_state: int, RandomState instance or None, optional (default: None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.



	n_jobs: int or None (optional, default=None)

	The maximum number of parallel threads to be run at a time. If none
this will default to using all the cores available. Note that there is
not perfect parallelism, so at several pints the algorithm will be
single threaded.



	low_memory: boolean (optional, default=False)

	Whether to use a lower memory, but more computationally expensive
approach to index construction. This defaults to false as for most
cases it speeds index construction, but if you are having issues
with excessive memory use for your dataset consider setting this
to True.



	max_candidates: int (optional, default=20)

	Internally each “self-join” keeps a maximum number of candidates (
nearest neighbors and reverse nearest neighbors) to be considered.
This value controls this aspect of the algorithm. Larger values will
provide more accurate search results later, but potentially at
non-negligible computation cost in building the index. Don’t tweak
this value unless you know what you’re doing.



	n_iters: int (optional, default=None)

	The maximum number of NN-descent iterations to perform. The
NN-descent algorithm can abort early if limited progress is being
made, so this only controls the worst case. Don’t tweak
this value unless you know what you’re doing. The default of None means
a value will be chosen based on the size of the graph_data.



	early_termination_value: float (optional, default=0.001)

	Controls the early abort due to limited progress. Larger values
will result in earlier aborts, providing less accurate indexes,
and less accurate searching. Don’t tweak this value unless you know
what you’re doing.



	parallel_batch_queries: bool (optional, default=False)

	Whether to use parallelism of batched queries. This can be useful for large
batches of queries on multicore machines, but results in performance degradation
for single queries, so is poor for streaming use.



	verbose: bool (optional, default=False)

	Whether to print status graph_data during the computation.





>>> from sklearn.manifold import Isomap
>>> from pynndescent import PyNNDescentTransformer
>>> from sklearn.pipeline import make_pipeline
>>> estimator = make_pipeline(
...     PyNNDescentTransformer(n_neighbors=5),
...     Isomap(neighbors_algorithm='precomputed'))






	
fit(X, compress_index=True)

	Fit the PyNNDescent transformer to build KNN graphs with
neighbors given by the dataset X.


	Xarray-like, shape (n_samples, n_features)

	Sample graph_data






	transformerPyNNDescentTransformer

	The trained transformer










	
fit_transform(X, y=None, **fit_params)

	Fit to graph_data, then transform it.

Fits transformer to X and y with optional parameters fit_params
and returns a transformed version of X.


	Xnumpy array of shape (n_samples, n_features)

	Training set.





y : ignored


	XtCSR sparse matrix, shape (n_samples, n_samples)

	Xt[i, j] is assigned the weight of edge that connects i to j.
Only the neighbors have an explicit value.
The diagonal is always explicit.










	
transform(X, y=None)

	Computes the (weighted) graph of Neighbors for points in X


	Xarray-like, shape (n_samples_transform, n_features)

	Sample graph_data






	XtCSR sparse matrix, shape (n_samples_transform, n_samples_fit)

	Xt[i, j] is assigned the weight of edge that connects i to j.
Only the neighbors have an explicit value.













A number of internal functions can also be accessed separately for more fine tuned work.



Distance Functions


	
pynndescent.distances.chebyshev

	Chebyshev or l-infinity distance.


\[D(x, y) = \max_i |x_i - y_i|\]






	
pynndescent.distances.euclidean

	Standard euclidean distance.


\[\begin{split}D(x, y) = \\sqrt{\sum_i (x_i - y_i)^2}\end{split}\]






	
pynndescent.distances.manhattan

	Manhattan, taxicab, or l1 distance.


\[D(x, y) = \sum_i |x_i - y_i|\]






	
pynndescent.distances.minkowski

	Minkowski distance.


\[D(x, y) = \left(\sum_i |x_i - y_i|^p\right)^{\frac{1}{p}}\]

This is a general distance. For p=1 it is equivalent to
manhattan distance, for p=2 it is Euclidean distance, and
for p=infinity it is Chebyshev distance. In general it is better
to use the more specialised functions for those distances.






	
pynndescent.distances.squared_euclidean

	Squared euclidean distance.


\[D(x, y) = \sum_i (x_i - y_i)^2\]






	
pynndescent.distances.standardised_euclidean

	Euclidean distance standardised against a vector of standard
deviations per coordinate.


\[D(x, y) = \sqrt{\sum_i \frac{(x_i - y_i)**2}{v_i}}\]






	
pynndescent.distances.weighted_minkowski

	A weighted version of Minkowski distance.


\[D(x, y) = \left(\sum_i w_i |x_i - y_i|^p\right)^{\frac{1}{p}}\]

If weights w_i are inverse standard deviations of graph_data in each dimension
then this represented a standardised Minkowski distance (and is
equivalent to standardised Euclidean distance for p=1).
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